Defense Advanced Research Projects AgencyTagged Content List

Resilience and Robustness

Enabling technologies and systems to preserve effectiveness despite damage or other challenging conditions

Showing 86 results for Resilience RSS
The military relies heavily on the Global Positioning System (GPS) for positioning, navigation, and timing (PNT), but GPS access is easily blocked by methods such as jamming. In addition, many environments in which our military operates (inside buildings, in urban canyons, under dense foliage, underwater, and underground) have limited or no GPS access. To solve this challenge, Adaptable Navigation Systems (ANS) seeks to provide GPS-quality PNT to military users regardless of the operational environment.
The goal of the Adapting Cross-Domain Kill-Webs (ACK) program is to provide a decision aid for mission commanders to assist them with rapidly identifying and selecting options for tasking – and retasking – assets within and across organizational boundaries.
National Security Space (NSS) assets, critical to U.S. warfighting capabilities, traditionally reside in geosynchronous orbit to deliver persistent overhead access to any point on the globe. In the increasingly contested space environment, these exquisite, costly, and monolithic systems have become vulnerable targets that would take years to replace if degraded or destroyed. DARPA’s Blackjack program aims to develop and demonstrate the critical elements for a global high-speed network in low Earth orbit (LEO) that provides the Department of Defense with highly connected, resilient, and persistent coverage.
Modern-day software operates within a complex ecosystem of libraries, models, protocols and devices. Ecosystems change over time in response to new technologies or paradigms, as a consequence of repairing discovered vulnerabilities (security, logical, or performance-related), or because of varying resource availability and reconfiguration of the underlying execution platform. When these changes occur, applications may no longer work as expected because their assumptions on how the ecosystem should behave may have been inadvertently violated.
The continued growth in unmanned, sensor, and networked devices is expected to drive the need for larger, more capable and more diverse communications systems. Among other enhancements, these systems must improve jam-resistance and low probability of detection to keep pace with adversaries’ growing electronic sophistication and must adapt to fast-changing operational environments. By contrast, today’s military communications architectures are static and inflexible.