Defense Advanced Research Projects AgencyTagged Content List

Quantum Science

Understanding and leveraging quantum effects for military benefit

Showing 15 results for Quantum + Programs RSS
The goal of All Together Now (ATN) is to develop theoretical protocols and experimental techniques that enable new collective atom regimes, leading to sensitivities approaching the ultimate fundamental limits of performance.
Precise timing is essential across DoD systems, including communications, navigation, electronic warfare, intelligence systems reconnaissance, and system-of-systems platform coordination, as well as in national infrastructure applications in commerce and banking, telecommunications, and power distribution. Improved clock performance throughout the timing network, particularly at point-of-use, would enable advanced collaborative capabilities and provide greater resilience to disruptions of timing synchronization networks, notably by reducing reliance on satellite-based global navigation satellite system (GNSS) timing signals.
Detection of photons—the fundamental particles of light—is ubiquitous, but performance limitations of existing photon detectors hinders the effectiveness of applications such as light/laser detection and ranging (LIDAR/LADAR), photography, astronomy, quantum information science, medical imaging, microscopy and communications. In all of these applications, performance could be improved by replacing classical, analog light detectors with high-performance photon counting detectors.
Lasers have made a tremendous impact on our world – they are essential to diverse fields such as optical communications, remote sensing, manufacturing, and medicine. At the same time, photonic integrated circuits have allowed unprecedented advances in optical systems for Department of Defense (DoD) applications, including LiDAR, signal processing, chip-scale optical clocks, gyros, and data transmission. However, these two technologies today are limited by the incompatibility of the materials used to create them – silicon photonics are easy to manufacture but are poor light emitters while compound semiconductors enable efficient emitters but are difficult to scale for complex integrated circuits.
The Mesodynamic Architectures (Meso) program seeks to address future Defense needs by exploiting unique characteristics of matter and energy emerging at small spatial and short temporal scales including new states of matter, untapped forces, novel relationships between fields and excitations and the importance of noise and nonlinearity. The parallel goals of the Meso program are to provide DoD with unrivaled communication, sensing, and computation by exploiting mesoscale characteristics, while establishing well-defined problems to accelerate the transition to quantum engineering.