Defense Advanced Research Projects AgencyTagged Content List

Quantum Science

Understanding and leveraging quantum effects for military benefit

Showing 10 results for Quantum + PNT RSS
In science, many of the most interesting events occur at a scale far smaller than the unaided human eye can see. Medical researchers might realize a range of breakthroughs if they could look deep inside living biological cells, but existing methods for imaging either lack the desired sensitivity and resolution or require conditions that lead to cell death, such as cryogenic temperatures. Recently, however, a team of Harvard University-led researchers working on DARPA’s Quantum-Assisted Sensing and Readout (QuASAR) program demonstrated imaging of magnetic structures inside of living cells.
How do you take the temperature of a cell? The familiar thermometer from a doctor’s office is slightly too big considering the average human skin cell is only 30 millionths of a meter wide. But the capability is significant; developing the right technology to gauge and control the internal temperatures of cells and other nanospaces might open the door to a number of defense and medical applications: better thermal management of electronics, monitoring the structural integrity of high-performance materials, cell-specific treatment of disease and new tools for medical research.
Researchers from the National Institute of Standards and Technology (NIST), with funding from DARPA’s Quantum-Assisted Sensing and Readout (QuASAR) program, have built a pair of ytterbium atomic clocks that measure time with a precision that is approximately ten times better than the world’s previous best clocks, also developed under QuASAR. How good are they? The record-setting clocks are stable to within less than two parts per quintillion (1 followed by 18 zeros). They measure time so precisely that their readout would be equivalent to specifying the Earth’s diameter to less than the width of a single atom or the age of the known universe to less than one second.
DARPA published its Young Faculty Award (YFA) 2018 Research Announcement today, seeking proposals in 26 different topic areas—the largest number of YFA research areas ever solicited.
In this episode of the Voices from DARPA podcast, Dr. John Burke, a program manager since 2017 in the agency’s Microsystems Technology Office (MTO), goes deep, quantum-mechanics deep. The miniaturized, affordable, and ultrastable atomic clocks he hopes to make possible would kick in if the GPS system were to go down due to natural or adversarial actions. Such clocks could keep the military machine viable while also preserving or even enhancing the operation of civilian must-haves ranging from financial transactions to ridesharing (think Uber and Lyft). Burke has teams of researchers pursuing magnificently sensitive magnetometers for detecting objects, materials, and activities otherwise hidden underground, underwater, or behind bone.