Defense Advanced Research Projects AgencyTagged Content List

Quantum Science

Understanding and leveraging quantum effects for military benefit

Showing 37 results for Quantum RSS
The Mesodynamic Architectures (Meso) program seeks to address future Defense needs by exploiting unique characteristics of matter and energy emerging at small spatial and short temporal scales including new states of matter, untapped forces, novel relationships between fields and excitations and the importance of noise and nonlinearity. The parallel goals of the Meso program are to provide DoD with unrivaled communication, sensing, and computation by exploiting mesoscale characteristics, while establishing well-defined problems to accelerate the transition to quantum engineering.
For decades, Global Positioning System (GPS) technology has been incorporated into vehicles and munitions to meet DoD requirements for precision guidance and navigation. GPS dependence creates a critical vulnerability for many DoD systems in situations where the GPS signal is degraded or unavailable.
Recent advances in our understanding of light-matter interactions, often with patterned and resonant structures, reveal nascent concepts for new interactions that may impact many applications. Examples of these novel phenomena include interactions involving active media, symmetry, non-reciprocity, and linear/nonlinear resonant coupling effects.
Micro- and nanoelectromechanical systems (MEMS and NEMS) are employed in many Department of Defense (DoD) systems. These devices find use in compact accelerometers and gyroscopes for stability control and inertial navigation and in switches for optical communication and data routing. Incredibly, these devices still operate many of orders of magnitude away from their ultimate limits. Techniques to reduce or overcome thermal noise in MEMS/NEMS devices are critical for realizing their full potential.
Universal quantum computers with millions of quantum bits, or qubits – which can represent a one, a zero, or a coherent linear combination of one and zero – would revolutionize information processing for commercial and military applications. Realizing that vision, however, is still decades away. The problem is the performance and reliability of quantum devices depend on the length of time the underlying quantum states can remain coherent. If you wait long enough, interactions with the environment will make the state behave like a conventional classical system, removing any quantum advantage. Often, this coherence time is significantly short, which makes it difficult to perform any meaningful computations.