Defense Advanced Research Projects AgencyTagged Content List

Quantum Science

Understanding and leveraging quantum effects for military benefit

Showing 34 results for Quantum RSS
05/15/2018
Dr. John Burke joined DARPA as a Program Manager in the Microsystems Technology Office (MTO) in August 2017. His research interests include the development of high-stability, low-noise sensors and frequency synthesis to enable new positioning, navigation, and timing (PNT) and remote detection capabilities. He is particularly interested in the integration of modern atomic physics techniques (e.g. laser cooling and trapping) with photonic circuits and atom chips to reduce the complexity, cost, and size of these techniques while increasing their robustness and reliability for use outside of a laboratory environment.
01/01/2004
As part of the then three-year-old Quantum Information Science and Technology (QuIST) program, DARPA-funded researchers established the first so-called quantum key distribution network, a data-encryption framework for protecting a fiber-optic loop that connects facilities at Harvard University, Boston University, and the office of BBN Technologies in Cambridge, Mass.
01/01/1993
In 1993, program manager Stuart Wolf initiated what become a sustained sequence of programs that helped develop the foundations of magnetics-based and quantum microelectronics. The first program, Spintronics, catalyzed the development of non-volatile magnetic memory (MRAM) devices and led to SPiNS, a program that sought to develop spin-based integrated circuits (ICs). During this period, DARPA started a dozen related programs in the field of magnetics and electron spin for microelectronics that collectively helped launch increasingly diverse and complex technologies, including ones that led to astoundingly dense data storage.
05/02/2013
In science, many of the most interesting events occur at a scale far smaller than the unaided human eye can see. Medical researchers might realize a range of breakthroughs if they could look deep inside living biological cells, but existing methods for imaging either lack the desired sensitivity and resolution or require conditions that lead to cell death, such as cryogenic temperatures. Recently, however, a team of Harvard University-led researchers working on DARPA’s Quantum-Assisted Sensing and Readout (QuASAR) program demonstrated imaging of magnetic structures inside of living cells.
08/05/2013
How do you take the temperature of a cell? The familiar thermometer from a doctor’s office is slightly too big considering the average human skin cell is only 30 millionths of a meter wide. But the capability is significant; developing the right technology to gauge and control the internal temperatures of cells and other nanospaces might open the door to a number of defense and medical applications: better thermal management of electronics, monitoring the structural integrity of high-performance materials, cell-specific treatment of disease and new tools for medical research.