Defense Advanced Research Projects AgencyTagged Content List

Information or Signal Processing

Computational tools and techiques for manipulating, analyzing, and synthesizing signals and data

Showing 51 results for Processing RSS
The Optimization with Noisy Intermediate-Scale Quantum devices (ONISQ) program aims to exploit quantum information processing before fully fault-tolerant quantum computers are realized. This effort will pursue a hybrid concept that combines intermediate-sized quantum devices with classical systems to solve a particularly challenging set of problems known as combinatorial optimization. ONISQ seeks to demonstrate the quantitative advantage of quantum information processing by leapfrogging the performance of classical-only systems in solving optimization challenges.
The POEM program aims to address electrical communications link limitations by developing chip-scale, integrated photonic technology to enable seamless intrachip and offchip photonic communications that provide the required bandwidth with low energy/bit. The POEM program will exploit wavelength division multiplexing (WDM), allowing much higher bandwidth capacity per link, which is imperative to meeting the communication needs of future microprocessors. Such a capability would propel the microprocessor onto a new performance trajectory and impact the actual runtime performance of DoD-relevant computing tasks for power-starved embedded applications and supercomputing.
Computational capability is an enabler for nearly every military system, but increases in this capability are limited by available system power and constraints on the ability to dissipate heat. This is a challenge for embedded applications such as soldier-borne applications, UAVs and command and control systems on submarines. Today’s intelligence, surveillance and reconnaissance (ISR) systems have sensors that collect far more information than they can process in real time; as a result, what could be invaluable real-time intelligence data in the hands of our warfighters is simply discarded, or perhaps recorded and processed hours or days after it was collected.
Real-time assessment of the electromagnetic environment can provide a key tactical advantage. The rapid development and proliferation of advanced radios, however, has made this a challenging task. Radio frequency (RF) sensor systems on the modern battlefield must cover many RF and microwave bands through noise and powerful interferers. Ultra-wideband analog-to-digital conversion (ADC) has emerged as an essential technology to interface between propagating analog RF signals and digital processing for reactive decision-making. Such an ADC allows for high-speed and reconfigurable digital processing in a complex electromagnetic environment.
For decades, miniaturizing electronics has been key to a wide array of technology innovations and an important economic driver. As an example, the seemingly endless shrinking of the transistor has allowed the semiconductor industry to place ever more devices on the same amount of silicon. Each time the size decreased, transistors became faster and used less power, allowing increasingly capable electronics in smaller packages at reduced cost.