Defense Advanced Research Projects AgencyTagged Content List

Position, Navigation and Timing

Technologies relating to precision geolocation, time-keeping and synchronization

Showing 7 results for PNT + Resources RSS
The Microsystems Technology Office’s (MTO) core mission is to develop high-performance intelligent microsystems and next-generation components to ensure U.S. dominance in the areas of Command, Control, Communications, Computing, Intelligence, Surveillance, and Reconnaissance (C4ISR), Electronic Warfare (EW), and Directed Energy (DE). The effectiveness, survivability, and lethality of these systems depend critically on the microsystems contained inside.
DARPA’s Strategic Technology Office (STO) aims to provide the U.S. military lethality using a strategy called Mosaic Warfare: fast, scalable, adaptive joint multi-domain lethality. STO’s areas of interest include: Mosaic Technologies, Mosaic Effect Web Services (EWS), Mosaic Experimentation, and Foundational Strategic Technologies and Systems.
The Chip-Scale Atomic Clock (CSAC) program created ultra-miniaturized, low-power, atomic time and frequency reference units. The development of CSAC enabled ultra-miniaturized and ultra-low power atomic clocks for high-security Ultra High Frequency (UHF) communication and jam-resistant GPS receivers.
| History | PNT |

With roots extending to the DARPA-supported Transit program—a Navy submarine-geopositioning system originating in the earliest years of the Space Age at the Johns Hopkins University Applied Physics Laboratory—what became today’s world-changing GPS technology began to take modern form in 1973. That is when the Department of Defense called for the creation of a joint program office to develop the NAVSTAR Global Positioning System.

In the early 1980s, as this network of dozens of satellites and ground stations became ever more operational, Soldiers on the ground had to heft around bulky and heavy PSN-8 Manpack GPS receivers. In 1983, in response to a Marine Corps Required Operational Capability to lighten warfighters’ loads, DARPA re-emerged in the GPS-development landscape, focusing on miniaturizing GPS receivers. That effort created a context in which an industry participant in the development process, Rockwell Collins, took the baton to produce a gallium arsenide hybrid chip that allowed for combined analog and digital functionality and the first “all-digital” GPS receivers.

Miniaturized GPS technology has significantly improved the U.S. military’s ability to attack and eliminate difficult targets and to do so from greater distances—fundamentally and progressively changing strategy and enabling successes during the Cold War, the Gulf War, and in more recent conflicts in which the United States has had to contend with dispersed and elusive foes. It also has had transformative effects throughout society. Perhaps most emblematic of this ongoing technology revolution is that soothing voice saying, “Turn right at the next corner,” from your smart phone’s navigation application (and the arguably less soothing declaration, “Recalculating”).

Early GPS receivers were bulky, heavy devices. In 1983, DARPA set out to miniaturize them, leading to a much broader adoption of GPS capability.