Defense Advanced Research Projects AgencyTagged Content List

Position, Navigation and Timing

Technologies relating to precision geolocation, time-keeping and synchronization

Showing 16 results for PNT + Programs RSS
For decades, Global Positioning System (GPS) technology has been incorporated into vehicles and munitions to meet DoD requirements for precision guidance and navigation. GPS dependence creates a critical vulnerability for many DoD systems in situations where the GPS signal is degraded or unavailable.
The Chip-Scale Atomic Clock (CSAC) effort created ultra-miniaturized, low-power, atomic time and frequency reference units. The development of CSAC enabled ultra-miniaturized and ultra-low power atomic clocks for high-security Ultra High Frequency (UHF) communication and jam-resistant GPS receivers. The use of CSAC technology can greatly improve the mobility and robustness of any military system or platform with sophisticated UHF communication and/or navigation requirements.
The Microscale Rate Integrating Gyroscope (MRIG) effort seeks to create micromachined vibratory gyroscopes that can be instrumented to directly measure the angle of rotation, extending the dynamic range and eliminating the need to integrate angular rate information. If successful, MRIG will enable high performance, low cost gyroscopes which, when integrated in Inertial Measurement Units (IMU), will be small enough for adaptation in guided munitions’ platforms, hand-held devices, and add-in portable Guidance, Navigation, and Control (GN&C) units.
Micro Inertial Navigation Technology (MINT) aims to create navigation sensors that use secondary inertial variables, such as velocity and distance, to mitigate the error growth encountered with the inertial sensor alone. The combination of micro scale navigation aiding sensors will provide navigation accuracy beyond that which can be accomplished with a traditional inertial measurement unit (IMU) – equipped with only accelerometers and gyroscopes. If successful, the MINT effort will create micro- and nano-scale low-power navigation sensors that allow long term (hours to days) of GPS denied precision navigation.
The Global Positioning System (GPS) is the predominant means of obtaining positioning, navigation, and timing (PNT) information for both military and civilian systems and applications. However, the radio frequency basis for GPS also means that its signals cannot penetrate seawater, and thus undersea GPS is effectively denied. The Positioning System for Deep Ocean Navigation (POSYDON) program aims to develop an undersea system that provides omnipresent, robust positioning across ocean basins.
| Maritime | PNT |