Defense Advanced Research Projects AgencyTagged Content List

Position, Navigation and Timing

Technologies relating to precision geolocation, time-keeping and synchronization

Showing 16 results for PNT + Programs RSS
The military relies heavily on the Global Positioning System (GPS) for positioning, navigation, and timing (PNT), but GPS access is easily blocked by methods such as jamming. In addition, many environments in which our military operates (inside buildings, in urban canyons, under dense foliage, underwater, and underground) have limited or no GPS access. To solve this challenge, Adaptable Navigation Systems (ANS) seeks to provide GPS-quality PNT to military users regardless of the operational environment.
The goal of All Together Now (ATN) is to develop theoretical protocols and experimental techniques that enable new collective atom regimes, leading to sensitivities approaching the ultimate fundamental limits of performance.
DARPA's Angler program seeks to develop undersea autonomous robotic solutions capable of navigating ocean depths, surveying wide areas, and physically manipulating manmade objects of interest on the sea floor. The program builds on the agency's previous advances in autonomous robotic manipulation on Earth and in space, and aims to process mission commands, sensor inputs, and information about the deep ocean environment to complete tasks with no human intervention.
Precise timing is essential across DoD systems, including communications, navigation, electronic warfare, intelligence systems reconnaissance, and system-of-systems platform coordination, as well as in national infrastructure applications in commerce and banking, telecommunications, and power distribution. Improved clock performance throughout the timing network, particularly at point-of-use, would enable advanced collaborative capabilities and provide greater resilience to disruptions of timing synchronization networks, notably by reducing reliance on satellite-based global navigation satellite system (GNSS) timing signals.
DRINQS is a fundamental science program that aims to investigate a recent paradigm shift in quantum research, which maintains that periodically driving a system out of equilibrium may increase the length of time that its quantum state endures. DRINQS aims to investigate this phenomenon and demonstrate significant gains over conventional states in timekeeping, field sensing, and information processing for use in national security applications.
| Materials | PNT |