Defense Advanced Research Projects AgencyTagged Content List

Position, Navigation and Timing

Technologies relating to precision geolocation, time-keeping and synchronization

Showing 12 results for PNT + News RSS
04/10/2013
The U.S. Military relies on the space-based Global Positioning System (GPS) to aid air, land and sea navigation. Like the GPS units in many automobiles today, a simple receiver and some processing power is all that is needed for accurate navigation. But, what if the GPS satellites suddenly became unavailable due to malfunction, enemy action or simple interference, such as driving into a tunnel? Unavailability of GPS would be inconvenient for drivers on the road, but could be disastrous for military missions. DARPA is working to protect against such a scenario, and an emerging solution is much smaller than the navigation instruments in today’s defense systems.
05/02/2013
In science, many of the most interesting events occur at a scale far smaller than the unaided human eye can see. Medical researchers might realize a range of breakthroughs if they could look deep inside living biological cells, but existing methods for imaging either lack the desired sensitivity and resolution or require conditions that lead to cell death, such as cryogenic temperatures. Recently, however, a team of Harvard University-led researchers working on DARPA’s Quantum-Assisted Sensing and Readout (QuASAR) program demonstrated imaging of magnetic structures inside of living cells.
08/05/2013
How do you take the temperature of a cell? The familiar thermometer from a doctor’s office is slightly too big considering the average human skin cell is only 30 millionths of a meter wide. But the capability is significant; developing the right technology to gauge and control the internal temperatures of cells and other nanospaces might open the door to a number of defense and medical applications: better thermal management of electronics, monitoring the structural integrity of high-performance materials, cell-specific treatment of disease and new tools for medical research.
08/29/2013
Researchers from the National Institute of Standards and Technology (NIST), with funding from DARPA’s Quantum-Assisted Sensing and Readout (QuASAR) program, have built a pair of ytterbium atomic clocks that measure time with a precision that is approximately ten times better than the world’s previous best clocks, also developed under QuASAR. How good are they? The record-setting clocks are stable to within less than two parts per quintillion (1 followed by 18 zeros). They measure time so precisely that their readout would be equivalent to specifying the Earth’s diameter to less than the width of a single atom or the age of the known universe to less than one second.
03/13/2014
At the break of dawn on March 13, 2004, 15 vehicles left a starting gate in the desert outside of Barstow, Calif., to make history in the DARPA Grand Challenge, a first-of-its-kind race to foster the development of self-driving ground vehicles. The immediate goal: autonomously navigate a 142-mile course that ran across the desert to Primm, Nev. The longer-term aim was to accelerate development of the technological foundations for autonomous vehicles that could ultimately substitute for men and women in hazardous military operations, such as supply convoys.