Defense Advanced Research Projects AgencyTagged Content List

Supervised Autonomy

Automated capabilities with human supervision; "human in the loop"

Showing 42 results for Autonomy + Robotics RSS
01/01/2005
With its sights on robotic pack mules to help warfighter in operations, DARPA initiated a program that yielded BigDog. The robot’s on-board computer controls locomotion, processes sensors, and handles communications with the user. BigDog’s control system keeps it balanced, manages locomotion on a wide variety of terrain, and does navigation. Sensors for locomotion include joint position, joint force, ground contact, ground load, a gyroscope, LIDAR, and a stereo vision system. Other sensors focus on the internal state of BigDog, monitoring the hydraulic pressure, oil temperature, engine functions, battery charge, and others.
01/01/2015
In June 2015, the finale of the DARPA Robotics Challenge, a competition of robot systems and software teams vying to develop robots capable of assisting humans in responding to natural and man-made disasters, unfolded at the Fairplex in Pomona, Calif.
01/01/2013

The Atlas disaster-response robot made its public debut on July 11, 2013. In its original form, the 6’2”, 330-lb. humanoid robot—developed for DARPA by Boston Dynamics of Waltham, Mass.—was capable of a range of natural movements. A tether connected the robot to both an off-board power supply and computer through which a human operator issued commands.

01/01/2013
To help alleviate physical weight on troops, DARPA developed a four-legged robot, the Legged Squad Support System (LS3), to integrate with squads of Marines or Soldiers. LS3 demonstrated that a highly mobile, semi-autonomous legged robot could carry 400 lbs of a squad’s load, follow squad members through rugged terrain and interact with troops in a natural way, similar to a trained animal and its handler.
06/27/2013
The DARPA Robotics Challenge (DRC) was created with a clear vision: spur development of advanced robots that can assist humans in mitigating and recovering from future natural and man-made disasters. Disasters evoke powerful, physical images of destruction, yet the first event of the DRC was a software competition carried out in a virtual environment that looked like an obstacle course set in a suburban area. That setting was the first proving ground for testing software that might control successful disaster response robots, and it was the world’s first view into the DARPA Robotics Challenge Simulator, an open-source platform that could revolutionize robotics development.