Defense Advanced Research Projects AgencyTagged Content List

Photonics, Optics and Lasers

Science and technology dealing with the transmission and manipulation of light

Showing 69 results for Photonics RSS
Detection of photons—the fundamental particles of light—is ubiquitous, but performance limitations of existing photon detectors hinders the effectiveness of applications such as light/laser detection and ranging (LIDAR/LADAR), photography, astronomy, quantum information science, medical imaging, microscopy and communications. In all of these applications, performance could be improved by replacing classical, analog light detectors with high-performance photon counting detectors.
Enemy surface-to-air threats to manned and unmanned aircraft have become increasingly sophisticated, creating a need for rapid and effective response to this growing category of threats. High power lasers can provide a solution to this challenge, as they harness the speed and power of light to counter multiple threats. Laser weapon systems provide additional capability for offensive missions as well—adding precise targeting with low probability of collateral damage. For consideration as a weapon system on today’s air assets though, these laser weapon systems must be lighter and more compact than the state-of-the-art has produced.
The photon is a fundamental carrier of information, possessing numerous information carrying degrees of freedom including frequency, phase, arrival time, polarization, orbital angular momentum, linear momentum, entanglement, etc. Because optical photons are approximately a million times more costly (i.e., energetic) than their radio frequency counterparts, photons are a valuable resource for many military applications ranging from communications systems to visible and infrared sensing platforms.
The Military Imaging and Surveillance Technology (MIST) program seeks to develop a fundamentally new optical Intelligence, Surveillance, and Reconnaissance (ISR) capability able to provide high-resolution 3-D images to locate and identify a target at much longer ranges than is possible with existing optical systems.
Free-space optics today requires a telescope, bulk lasers with mechanical beam-steering, detectors, and electronics. The Modular Optical Aperture Building Blocks (MOABB) program seeks to design all of these components into a single integrated device. In what would be deemed as the most complex electronic-photonic circuit ever fashioned, the program’s performers will work to create a wafer-scale system that is 100x smaller and lighter than conventional systems and can steer the optical beam 1,000x faster than mechanical components.