Defense Advanced Research Projects AgencyTagged Content List

Photonics, Optics and Lasers

Science and technology dealing with the transmission and manipulation of light

Showing 69 results for Photonics RSS
05/21/2015
Many essential military capabilities—including autonomous navigation, chemical-biological sensing, precision targeting and communications—increasingly rely upon laser-scanning technologies such as LIDAR (think radar that uses light instead of radio waves). These technologies provide amazing high-resolution information at long ranges but have a common Achilles heel: They require mechanical assemblies to sweep the laser back and forth. These large, slow opto-mechanical systems are both temperature- and impact-sensitive and often cost tens of thousands of dollars each—all factors that limit widespread adoption of current technologies for military and commercial use.
05/21/2015
DARPA’s High-Energy Liquid Laser Area Defense System (HELLADS) has demonstrated sufficient laser power and beam quality to advance to a series of field tests. The achievement of government acceptance for field trials marks the end of the program’s laboratory development phase and the beginning of a new and challenging set of tests against rockets, mortars, vehicles and surrogate surface-to-air missiles at White Sands Missile Range, New Mexico.
05/22/2015
Conventional optical imaging systems today largely limit themselves to the measurement of light intensity, providing two-dimensional renderings of three-dimensional scenes and ignoring significant amounts of additional information that may be carried by captured light.
12/03/2015
At the end of 2013, the United Nations General Assembly designated 2015 as the International Year of Light and Light-based Technologies (IYL 2015). And what could be more worthy of celebration than light?
12/04/2015
Find a way to replace a large, heavy and expensive technology with an equivalent one that’s a lot smaller, lighter and cheaper and you have a shot at turning a boutique technology into a world changer. Think of the room-sized computers of the 1940s that now are outpowered by the run-of-the-mill central processing unit in laptop computers. Or the miniaturized GPS components that contribute geolocation smartness in cell phones. DARPA program manager Joshua Conway has another shrinking act in mind: packing the light-catching powers of bulky lens-filled telescopes onto flat, semiconductor wafers that are saucer-sized or smaller, featherweight and cheap to make.