Defense Advanced Research Projects AgencyTagged Content List

Photonics, Optics and Lasers

Science and technology dealing with the transmission and manipulation of light

Showing 80 results for Photonics RSS
The photon is a fundamental carrier of information, possessing numerous information carrying degrees of freedom including frequency, phase, arrival time, polarization, orbital angular momentum, linear momentum, entanglement, etc. Because optical photons are approximately a million times more costly (i.e., energetic) than their radio frequency counterparts, photons are a valuable resource for many military applications ranging from communications systems to visible and infrared sensing platforms.
Autonomous and semi-autonomous systems need active illumination to navigate at night or underground. Switching on visible headlights or some other emitting system like lidar, however, has a significant drawback: It allows adversaries to detect a vehicle’s presence, in some cases from long distances away.
Lasers have made a tremendous impact on our world – they are essential to diverse fields such as optical communications, remote sensing, manufacturing, and medicine. At the same time, photonic integrated circuits have allowed unprecedented advances in optical systems for Department of Defense (DoD) applications, including LiDAR, signal processing, chip-scale optical clocks, gyros, and data transmission. However, these two technologies today are limited by the incompatibility of the materials used to create them – silicon photonics are easy to manufacture but are poor light emitters while compound semiconductors enable efficient emitters but are difficult to scale for complex integrated circuits.
The Military Imaging and Surveillance Technology (MIST) program seeks to develop a fundamentally new optical Intelligence, Surveillance, and Reconnaissance (ISR) capability able to provide high-resolution 3-D images to locate and identify a target at much longer ranges than is possible with existing optical systems.
Free-space optics today requires a telescope, bulk lasers with mechanical beam-steering, detectors, and electronics. The Modular Optical Aperture Building Blocks (MOABB) program seeks to design all of these components into a single integrated device. In what would be deemed as the most complex electronic-photonic circuit ever fashioned, the program’s performers will work to create a wafer-scale system that is 100x smaller and lighter than conventional systems and can steer the optical beam 1,000x faster than mechanical components.