Defense Advanced Research Projects AgencyTagged Content List

Photonics, Optics and Lasers

Science and technology dealing with the transmission and manipulation of light

Showing 69 results for Photonics RSS
Defense applications, such as geo-location, navigation, communication, coherent imaging and radar, depend on the generation and transmission of stable, agile electromagnetic radiation. Improved radiation sources—for example, lower noise microwaves or higher flux x-rays—could enhance existing capabilities and enable entirely new technologies.
Real-time assessment of the electromagnetic environment can provide a key tactical advantage. The rapid development and proliferation of advanced radios, however, has made this a challenging task. Radio frequency (RF) sensor systems on the modern battlefield must cover many RF and microwave bands through noise and powerful interferers. Ultra-wideband analog-to-digital conversion (ADC) has emerged as an essential technology to interface between propagating analog RF signals and digital processing for reactive decision-making. Such an ADC allows for high-speed and reconfigurable digital processing in a complex electromagnetic environment.
Conventional optical imaging systems today largely limit themselves to the measurement of light intensity, providing two-dimensional renderings of three-dimensional scenes and ignoring significant amounts of additional information that may be carried by captured light.
Laser beam-steering is a critical enabler for military and civilian applications including autonomous navigation, chemical-biological sensing, precision targeting and communications. Current beam-steering systems often rely on large, slow, opto-mechanical devices such as the optical gimbal. The gimbal, however, tends to be the largest, slowest and most expensive component in the optical system. Drawing on phased array concepts that revolutionized RADAR technology, the Short-Range, Wide Field-of-View Extremely agile, Electronically Steered Photonic Emitter (SWEEPER) program will develop a compact, agile alternative to mechanical beam-steering.
Our ability to detect and identify chemical and biological signals of interest is critical for security at home and abroad. While optical spectroscopy is a valuable tool in the laboratory, current technologies lack the sensitivity and broad spectral coverage needed to detect and distinguish among agents of interest given ubiquitous, dynamic background signals generated by common components in the atmosphere.