Defense Advanced Research Projects AgencyTagged Content List

Neuroscience

Relating to the central and peripheral nervous system, including the brain

Showing 67 results for Neuroscience RSS
03/28/2018
DARPA launched the Restoring Active Memory (RAM) program in November 2013 with the goal of developing a fully implantable, closed-loop neural interface capable of restoring normal memory function to military personnel suffering from the effects of brain injury or illness. Just over four years later, the program is returning remarkable results.
11/30/2018
Four years ago, DARPA announced the start of a “journey of discovery” toward understanding and treating networks of the brain. The Systems-Based Neurotechnology for Emerging Therapies (SUBNETS) program proposed to develop responsive, adaptable, closed-loop therapies for neuropsychiatric illness that incorporate recording and analysis of brain activity with near-real-time neural stimulation to correct or mitigate brain dysfunction. The premise of SUBNETS is that brain function and dysfunction — rather than being relegated to distinct anatomical regions of the brain — play out across distributed neural systems.
05/20/2019
DARPA has awarded funding to six organizations to support the Next-Generation Nonsurgical Neurotechnology (N3) program, first announced in March 2018. Battelle Memorial Institute, Carnegie Mellon University, Johns Hopkins University Applied Physics Laboratory, Palo Alto Research Center (PARC), Rice University, and Teledyne Scientific are leading multidisciplinary teams to develop high-resolution, bidirectional brain-machine interfaces for use by able-bodied service members. These wearable interfaces could ultimately enable diverse national security applications such as control of active cyber defense systems and swarms of unmanned aerial vehicles, or teaming with computer systems to multitask during complex missions.
09/11/2019
In the wake of the Iraq and Afghanistan wars, the mental health crisis among U.S. military veterans remains unrelenting, despite the best efforts of healthcare researchers and providers to confront the scale and scope of the problem. According to a 2018 report from the Department of Veterans Affairs, an average of twenty U.S. veterans commit suicide each day.
10/17/2019
Spinal cord injury disrupts the connection between brain and body, causing devastating loss of physiological function to the wounded warfighter. In addition to paralysis, service members living with these injuries exhibit increased long-term morbidity due to factors such as respiratory and cardiovascular complications. Bridging the Gap Plus (BG+), a new DARPA program that combines neurotechnology, artificial intelligence, and biological sensors, opens the possibility of overcoming the worst effects of spinal cord injuries by promoting healing at the wound site and interfacing with the nervous system at points around the body to restore natural functions such as breathing, bowel and bladder control, movement, touch, and proprioception that can be lost when the spinal cord is damaged.