Defense Advanced Research Projects AgencyTagged Content List

Network Technology

Relating to nodes in a connected architecture

Showing 10 results for Networking + Targeting RSS
03/31/2016
DARPA has awarded Phase 1 contracts for its Gremlins program, which seeks to develop innovative technologies and systems enabling aircraft to launch volleys of low-cost, reusable unmanned air systems (UASs) and safely and reliably retrieve them in mid-air. Such systems, or “gremlins,” would be deployed with a mixture of mission payloads capable of generating a variety of effects in a distributed and coordinated manner, providing U.S. forces with improved operational flexibility at a lower cost than is possible with conventional, monolithic platforms.
03/15/2017
DARPA recently completed Phase 1 of its Gremlins program, which envisions volleys of low-cost, reusable unmanned aerial systems (UASs)—or “gremlins”—that could be launched and later retrieved in mid-air. Taking the program to its next stage, the Agency has now awarded Phase 2 contracts to two teams, one led by Dynetics, Inc. (Huntsville, Ala.) and the other by General Atomics Aeronautical Systems, Inc. (San Diego, Calif.).
05/09/2018
DARPA is progressing toward its plan to demonstrate airborne launch and recovery of multiple unmanned aerial systems (UASs), targeted for late 2019. Now in its third and final phase, the goal for the Gremlins program is to develop a full-scale technology demonstration featuring the air recovery of multiple low-cost, reusable UASs, or “gremlins.”
For decades, U.S. military air operations have relied on increasingly capable multi-function manned aircraft to execute critical combat and non-combat missions. Adversaries’ abilities to detect and engage those aircraft from longer ranges have improved over time as well, however, driving up the costs for vehicle design, operation and replacement. An ability to send large numbers of small unmanned air systems (UASs) with coordinated, distributed capabilities could provide U.S. forces with improved operational flexibility at much lower cost than is possible with today’s expensive, all-in-one platforms—especially if those unmanned systems could be retrieved for reuse while airborne.
PCAS seeks to fundamentally increase Close Air Support effectiveness by enabling dismounted ground agents and combat aircrews to share real-time situational awareness and weapons systems data.