Defense Advanced Research Projects AgencyTagged Content List

Network Technology

Relating to nodes in a connected architecture

Showing 97 results for Networking RSS
DARPA is progressing toward its plan to demonstrate airborne launch and recovery of multiple unmanned aerial systems (UASs), targeted for late 2019. Now in its third and final phase, the goal for the Gremlins program is to develop a full-scale technology demonstration featuring the air recovery of multiple low-cost, reusable UASs, or “gremlins.”
Computing performance has steadily increased against the trajectory set by Moore’s Law, and networking performance has accelerated at a similar rate. Despite these connected evolutions in network and server technology however, the network stack, starting with the network interface card (NIC) – or the hardware that bridges the network/server boundary – has not kept pace. Today, network interface hardware is hampering data ingest from the network to processing hardware. Additional factors, such as limitations in server memory technologies, memory copying, poor application design, and competition for shared resources, has resulted in network subsystems that are creating a bottleneck within the network stack and are throttling application throughput.
DARPA's Gremlins program has completed the first flight test of its X-61A vehicle. The test in late November at the U.S. Army’s Dugway Proving Ground in Utah included one captive-carry mission aboard a C-130A and an airborne launch and free flight lasting just over an hour-and-a-half.
Emerging 5G mobile wireless networking technologies are slated to dramatically increase in both scale and speed, enabling much faster access to data collected from billions of connected devices. This supercharged information highway is envisioned to play an important role across several industries, ranging from medicine to manufacturing. Major advances in 5G, including new core network features will make it easier to customize the network at a wide variety of locations.
Establishing long-range tactical communications for U.S. troops in remote locations currently requires giant parabolic dishes, tall pole-mounted antennas, large antenna domes, and high-power amplifiers. Besides their significant weight, power, and cost (SWAP-C), these antennas present large visual and radio frequency (RF) signatures, are vulnerable to jamming, and constitute a single point of failure.