Defense Advanced Research Projects AgencyTagged Content List

Network Technology

Relating to nodes in a connected architecture

Showing 97 results for Networking RSS
Reliable wireless communications today requires careful allocation of specific portions of the electromagnetic spectrum to individual radio networks. While pre-allocating spectrum is effective in benign environments, radios remain vulnerable to inadvertent interference from other emitters and intentional jamming by adversaries.
Missions in remote, forward operating locations often suffer from a lack of connectivity to tactical operation centers and access to valuable intelligence, surveillance, and reconnaissance (ISR) data. The assets needed for long-range, high-bandwidth communications capabilities are often unavailable to lower echelons due to theater-wide mission priorities. DARPA’s Mobile Hotspots program aims to help overcome this challenge by developing a reliable, on-demand capability for establishing long-range, high-capacity reachback that is organic to tactical units. The program is building and demonstrating a scalable, mobile millimeter-wave communications backhaul network mounted on small unmanned aerial vehicles (UAVs) and providing a 1 Gb/s capacity.
In the heat of battle, lives can depend on being able to coordinate troop positions safely while directing aircraft to provide close air support for ground forces. DARPA’s Persistent Close Air Support (PCAS) program aims to help overcome those challenges by providing warfighters with advanced digital tools for situational awareness and targeting in place of legacy communications systems and traditional paper maps.
Today's dismounted squads use many different technologies to gather and share information. In many instances, however, these valuable but disparate inputs are not well integrated, leaving squad members without the degree of real-time situational awareness and support for decision-making that warfighters typically experience while on board aircraft and ships and in vehicles.
The U.S. military’s investments in unmanned aircraft systems (UAS) have proven invaluable for missions from intelligence, surveillance and reconnaissance (ISR) to tactical strike. Most of the current systems, however, require constant control by a dedicated pilot and sensor operator as well as a large number of analysts, all via telemetry. These requirements severely limit the scalability and cost-effectiveness of UAS operations and pose operational challenges in dynamic, long-distance engagements with highly mobile targets in contested electromagnetic environments.