Defense Advanced Research Projects AgencyTagged Content List

Munitions

Bullets, bombs and other projectiles used as weapons

Showing 28 results for Munitions RSS
01/01/1987
Beginning in the 1970s, DARPA began the Tank Breaker program in response to deficiencies identified by the U.S. Army and U.S. Marine Corps in their existing infantry anti-tank weapon. The Army evaluated two Tank Breaker designs by industry participants against alternatives in a shoot-off conducted in 1987-1988. The results led to selection of the Texas Instruments (later Raytheon) solution to the tank warfare challenge. Department of Defense officials approved it for full-scale development in 1989 under the Army’s Advanced Anti-armor Weapon System-Medium (AAWS-M) program. The Army later renamed the weapon Javelin, which entered full-scale production in 1997. It was the world’s first medium-range, one-man-portable, fire-and-forget anti-tank weapon system.
01/01/1969

Building on the momentum of jet engine research prior to ARPA’s creation, the Agency joined with the U.S. Army in 1965 on the Individual Mobility System (IMS) project (1965-1969) with the goal of extending the range and endurance of the Bell Rocket Belt developed for the Army in the 1950s. With DARPA funding, Bell replaced the vertical lift rocket system with a compact, highly efficient turbofan engine that Williams Research Corporation was developing.

The DARPA project helped bring the WR-19 turbofan engine into full development. It also brought it to the attention of the U.S. Air Force, for which the engine demonstrated excellent horizontal flight characteristics. The engine was adapted for use in the new Air Force cruise missile program. The U.S. Navy also became interested in the Williams Research engines as it adapted cruise missiles for maritime applications.

By the 1990s, improved versions of the Williams engine would power all the air, surface, and subsurface launched cruise missiles in the Navy and Air Force inventories. Later incarnation of these propulsion technology developments would power the AGM-86B air-launched cruise missiles and Navy Tomahawk cruise missiles in Desert Storm in 1991 and in subsequent conflicts.

01/01/1969

In 1969, the Applied Research Laboratory at Penn State began work, under U.S. Navy sponsorship, on a lithium-based thermal energy system for torpedo application. The system, known as the Stored Chemical Energy Propulsion System (SCEPS), was applicable to the high-power, short-duration mission of a torpedo. In a subsequent effort to further torpedo capabilities, DARPA subsequently selected the SCEPS heat source for use with an engine design that could be suitable for deployment in a long-endurance undersea vehicle.

One of the engineering obstacles that the DARPA adaptation of the heat source overcame was the development of long-life injectors of SF6 (one of the SCEPS chemical ingredients) that could survive in the system’s molten lithium bath. The Navy SCEPS program, which had also been experiencing some difficulty with injectors, adapted the DARPA technology. SCEPS became the power plant for the MK 50 Torpedo, which the Navy first authorized for use in late 1992.

09/06/2013
Adversaries’ sophisticated air defense systems can make it difficult for current air- and surface-launched anti-ship missiles to hit their targets at long range. To engage specific enemy warships from beyond the reach of counter-fire systems, warfighters may require launching multiple missiles or employing overhead targeting assets such as radar-equipped planes or Global Positioning System (GPS) satellites—resources that may not always be available. To help address these challenges, the Defense Advanced Research Projects Agency (DARPA) and the Office of Naval Research (ONR) are collaborating on the Long Range Anti-Ship Missile (LRASM) program, which successfully launched its first prototype on August 27.
12/03/2013
An unmanned target ship demonstrates the effects of the second successful flight test of a Long Range Anti-Ship Missile (LRASM) prototype, conducted November 12 off the coast of Southern California. The test reinforced the results of LRASM’s first successful free-flight transition test (FFTT) on August 27, which verified the prototype’s flight characteristics and assessed subsystem and sensor performance. Both tests achieved all of their objectives after the prototypes used their respective onboard sensors to detect, engage and hit the moving 260-foot target ships with inert warheads.