Defense Advanced Research Projects AgencyTagged Content List

Mobile Technology

Technologies and advances that facilitate wireless, ubiquitous transmission, including miniaturization

Showing 13 results for Mobile + Spectrum RSS
The Microsystems Technology Office’s (MTO) core mission is to develop high-performance intelligent microsystems and next-generation components to ensure U.S. dominance in the areas of Command, Control, Communications, Computing, Intelligence, Surveillance, and Reconnaissance (C4ISR), Electronic Warfare (EW), and Directed Energy (DE). The effectiveness, survivability, and lethality of these systems depend critically on the microsystems contained inside.
05/18/2015
The Microsystems Technology Office’s (MTO) core mission is to develop high-performance intelligent microsystems and next-generation components to ensure U.S. dominance in the areas of Command, Control, Communications, Computing, Intelligence, Surveillance, and Reconnaissance (C4ISR), Electronic Warfare (EW), and Directed Energy (DE). The effectiveness, survivability, and lethality of these systems depend critically on the microsystems contained inside.
DARPA’s Strategic Technology Office (STO) is focused on technologies that enable fighting as a network to increase military effectiveness, cost leverage, and adaptability.
05/18/2015
DARPA’s Strategic Technology Office (STO) is focused on technologies that enable fighting as a network to increase military effectiveness, cost leverage, and adaptability. STO's areas of interest include: Battle Management, Command and Control; Communications and Networks; Intelligence, Surveillance, and Reconnaissance; Electronic Warfare; Positioning, Navigation, and Timing; and Foundational Strategic Technologies and Systems.
03/30/2017
If human ears could hear the electromagnetic spectrum, the noise levels these days would be overwhelming. The skyrocketing use of wireless devices in military and civilian domains has created a complicated and cacophonous environment, filled with signals of widely varying frequency and amplitude and a menagerie of modulations. For warfighters trying to maintain critical communications links, interpret ambiguous radar returns, or defend against electronic warfare tactics, the ability to sort through that thicket of waveforms is essential—to identify where key signals are coming from, what kind of signals they are, and how best to send and receive information via the least contested spectral bands.