Defense Advanced Research Projects AgencyTagged Content List

Information Microsystems

Relating to computer and other digital electronic systems

Showing 20 results for Microsystems + Photonics RSS
05/15/2018
Dr. Gordon Keeler joined DARPA in August 2017 as a Program Manager in the Microsystems Technology Office (MTO). His objective is to accelerate the development of emerging photonics, electronics, and integration technologies to open new pathways toward revolutionary optical microsystems.
05/16/2018
Dr. Young-Kai Chen joined DARPA as a Program Manager in the Microsystems Technology Office (MTO) in September 2017. His research interests include the exploration of innovative technology frontiers in the areas of semiconductor optoelectronic materials, devices, integrated circuits, and advanced system applications for smart sensors, secure broadband wireless, and photonic links.
Since its inception in 1991, DARPA’s Microsystems Technology Office (MTO) has been working to create and prevent strategic surprise through investments in compact microelectronic components such as microprocessors, microelectromechanical systems (MEMS), and photonic devices. MTO-derived innovations and advanced capabilities in areas such as wide-band gap materials, phased-array radars, high-energy lasers, and infrared imaging have helped the United States establish and maintain technological superiority for more than two decades.
05/18/2015
Since its inception in 1991, DARPA’s Microsystems Technology Office (MTO) has been working to create and prevent strategic surprise through investments in compact microelectronic components such as microprocessors, microelectromechanical systems (MEMS), and photonic devices. MTO-derived innovations and advanced capabilities in areas such as wide-band gap materials, phased-array radars, high-energy lasers, and infrared imaging have helped the United States establish and maintain technological superiority for more than two decades.
09/10/2014
DARPA’s Electronic-Photonic Heterogeneous Integration (E-PHI) program has successfully integrated billions of light-emitting dots on silicon to create an efficient silicon-based laser. The breakthrough, achieved by researchers working on the program at the University of California, Santa Barbara (UCSB), will enable the production of inexpensive and robust microsystems that exceed the performance capabilities of current technologies.