Defense Advanced Research Projects AgencyTagged Content List

Information Microsystems

Relating to computer and other digital electronic systems

Showing 16 results for Microsystems + Manufacturing RSS
Microelectronics support nearly all Department of Defense (DoD) activities, enabling capabilities such as the global positioning system, radar, command and control, and communications. Ensuring secure access to leading-edge microelectronics, however, is a challenge. The changing global semiconductor industry and the sophistication of U.S. adversaries, who might target military electronic components, suggest the need for an updated microelectronics security framework.
The inherent goodness of miniaturizing electronics has been key to a wide array of technology innovations and an important economic driver for several decades. For example, the seemingly endless shrinking of the transistor has allowed the semiconductor industry to place ever more devices on the same amount of silicon. Each time the size shrunk, transistors became faster and used less power, allowing increasingly capable electronics in smaller packages that cost less. In recent years, power requirements, excessive heat and other problems associated with physical limitations have reduced the advantages of continuing to shrink size.
The sophisticated electronics used by warfighters in everything from radios, remote sensors and even phones can now be made at such a low cost that they are pervasive throughout the battlefield. These electronics have become necessary for operations, but it is almost impossible to track and recover every device. At the end of operations, these electronics are often found scattered across the battlefield and might be captured by the enemy and repurposed or studied to compromise DoD’s strategic technological advantage.
Many military radio frequency (RF) systems, like radar and communication systems, use a class of power amplifiers (PAs) called monolithic microwave integrated circuits (MIMIC). MMIC PAs using gallium nitride (GaN) transistors hold great promise for enhanced RF performance, but operational characteristics are strongly affected by thermal resistance. Much of this resistance comes at the thermal junction where the substrate material of the circuit connects to the GaN transistor. If the junction and substrate have poor thermal properties, temperature will rise and performance will decrease.
Used and non-authentic counterfeit electronic components are widespread throughout the defense supply chain; over the past two years alone, more than one million suspect parts have been associated with known supply chain compromises.