Defense Advanced Research Projects AgencyTagged Content List

Information Microsystems

Relating to computer and other digital electronic systems

Showing 79 results for Microsystems RSS
05/28/2014
Since its inception in 1992, DARPA’S Microsystems Technology Office (MTO) has helped create and prevent strategic surprise through its investments in compact microelectronic components such as microprocessors, microelectromechanical systems (MEMS), and photonic devices. MTO’s revolutionary work applying these advanced capabilities in areas such as wide-band gap materials, phased array radars, high-energy lasers and infrared imaging have helped the United States establish and maintain technological superiority for more than two decades.
09/10/2014
DARPA’s Electronic-Photonic Heterogeneous Integration (E-PHI) program has successfully integrated billions of light-emitting dots on silicon to create an efficient silicon-based laser. The breakthrough, achieved by researchers working on the program at the University of California, Santa Barbara (UCSB), will enable the production of inexpensive and robust microsystems that exceed the performance capabilities of current technologies.
08/06/2015
By combining complementary mindsets on the leading edges of electronic and radiofrequency device engineering, a pair of researchers in DARPA’s Young Faculty Award program have devised ultratiny, electronic switches that approximate inter-neuron communication. These highly adaptable nanoscale switches can toggle on and off so fast, and with such low loss, they could become the basis of not only computer and memory devices but also multi-function radiofrequency (RF) chips, which users might reprogram on the fly to behave first like a cell-phone’s signal emitter but then, say, as a collision-avoidance radar component or a local radio jammer.
08/17/2015
Demand for specialized integrated circuits for military electronics continues to surge exponentially with no end in sight. Systems that synchronize the activity of unmanned aerial vehicles; real-time conversion of raw radar data into tactically useful 3-D imagery; and instant access to high-resolution sensor feeds on the battlefield are only three examples of this reality.
12/04/2015
Find a way to replace a large, heavy and expensive technology with an equivalent one that’s a lot smaller, lighter and cheaper and you have a shot at turning a boutique technology into a world changer. Think of the room-sized computers of the 1940s that now are outpowered by the run-of-the-mill central processing unit in laptop computers. Or the miniaturized GPS components that contribute geolocation smartness in cell phones. DARPA program manager Joshua Conway has another shrinking act in mind: packing the light-catching powers of bulky lens-filled telescopes onto flat, semiconductor wafers that are saucer-sized or smaller, featherweight and cheap to make.