Defense Advanced Research Projects AgencyTagged Content List

Microstructures

Relating to structures ranging from the atomic to millimeter scales

Showing 21 results for Microstructures RSS
Recent advances in our understanding of light-matter interactions, often with patterned and resonant structures, reveal nascent concepts for new interactions that may impact many applications. Examples of these novel phenomena include interactions involving active media, symmetry, non-reciprocity, and linear/nonlinear resonant coupling effects.
Uncertainties in materials and component manufacturing processes are a primary cause of cost escalation and delay during the development, testing and early production of defense systems. In addition, fielded military platforms may have unanticipated performance problems, despite large investment and extensive testing of their key components and subassemblies. These uncertainties and performance problems are often the result of the random variations and non-uniform scaling of manufacturing processes. These challenges, in turn, lead to counterproductive resistance to adoption of new, innovative manufacturing technologies that could offer better results.
Military platforms and structures, such as vehicles, ships, aircraft and buildings, must withstand transient shock, vibrations and other structural loads in a variety of demanding operational environments. These frequent and varying transient loads are often transmitted to occupants, which can degrade warfighters’ performance by creating discomfort and injuries. In addition, varying loads can lead to shortened service life for the military platforms, as well as the equipment inside. Currently, structures designed to achieve high stiffness for static loads (dead weight) typically can’t adapt to or dampen dynamic loads well. Conversely, structures designed for high damping do not carry conventional loads as efficiently.
The Topological Excitations in Electronics program aims to demonstrate the utility of topological excitations in various applications including memory, logic, sensors, and quantum information processing. Developing the ability to design materials with new controllable functionalities is crucial for the future of the Nation’s economic, energy, and defense security.
Program Manager
Dr. Ronald Polcawich joined DARPA as a Program Manager in the Microsystems Technology Office (MTO) in August 2017. His research interests include advanced materials processing, micromechanics for small-scale robotics, device designs, and miniaturized position, navigation, and timing (PNT) systems.