Defense Advanced Research Projects AgencyTagged Content List

Microchips and Components

Relating to miniaturized electronic circuitry and its components and features

Showing 26 results for Microchips + News RSS
The current generation of machine learning (ML) systems would not have been possible without significant computing advances made over the past few decades. The development of the graphics-processing unit (GPU) was critical to the advancement of ML as it provided new levels of compute power needed for ML systems to process and train on large data sets. As the field of artificial intelligence looks towards advancing beyond today’s ML capabilities, pushing into the realms of “learning” in real-time, new levels of computing are required.
For the past decade, cybersecurity threats have moved from high in the software stack to progressively lower levels of the computational hierarchy, working their way towards the underlying hardware. The rise of the Internet of Things (IoT) has driven the creation of a rapidly growing number of accessible devices and a multitude of complex chip designs needed to enable them. With this rapid growth comes increased opportunity for economic and nation-state adversaries alike to shift their attention to chips that enable complex capabilities across commercial and defense applications. The consequences of a hardware cyberattack are significant as a compromise could potentially impact not millions, but billions of devices.
Since its official announcement on June 1, 2017, DARPA’s Electronics Resurgence Initiative (ERI) has sought to advance the development of a specialized, secure, and heavily automated electronics industry. ERI – a five-year, upwards of $1.5B investment to enable far-reaching improvements in electronics performance – has fostered collaborations among the commercial electronics sector, defense industrial base, and university researchers. As ERI enters its second year, DARPA seeks to reconvene the electronics community at the second annual ERI Summit in Detroit, Michigan, July 15–17. The Summit will allow electronics innovators to share their vision for the future, review technical progress, and provide input into future research directions.
For the second year in a row, DARPA is convening the electronics community to discuss the ambitions and achievements of its five-year, upwards of $1.5 billion investment in U.S. microelectronics advancement. Attendees at the second annual Electronics Resurgence Initiative (ERI) Summit – being held July 15-17 in Detroit, Michigan – will hear from commercial and defense leaders as they share their insights on the domestic semiconductor industry and the applications driving next-generation electronics.
Lasers are essential to many fields – ranging from optical communications and remote sensing, to manufacturing and medicine. While the semiconductor laser was first demonstrated nearly 60 years ago, advances in diode lasers and access to semiconductor fabrication techniques have enabled continued innovation and miniaturization of the technology. Photonic integrated circuits (PICs), which combine many photonic elements onto a single chip, have also transformed the way lasers and other optical systems are engineered, creating improvements in size, weight, and power (SWaP), system performance, and enabling new functionality. Despite these advances, a number of obstacles still hamper the proliferation of optical systems for defense and commercial applications.