Defense Advanced Research Projects AgencyTagged Content List

Microchips and Components

Relating to miniaturized electronic circuitry and its components and features

Showing 25 results for Microchips + Manufacturing RSS
06/17/2020
From August 18-20, DARPA will host its third Electronics Resurgence Initiative (ERI) Summit and Microsystems Technology Office (MTO) Symposium. The annual event brings together leaders from across the electronics ecosystem – spanning government, defense, academia, and industry – to foster collaboration and share technical progress on DARPA’s five-year, $1.5 billion dollar investment into the advancement of the U.S. semiconductor industry.
July 23-25, 2018,
-
DARPA’s Microsystems Technology Office is hosting the first annual Electronics Resurgence Initiative (ERI) Summit. The three-day event will bring together those most impacted by the coming inflection in Moore’s Law, including senior representatives from the commercial sector, defense industrial base, academia, and government, to promote collaboration and cooperation on shaping the future direction of U.S. semiconductor innovation. The event will also highlight progress and opportunities within DARPA’s ERI research programs.
November 20, 2019, 8:00 AM EST,
Executive Conference Center
The Microsystems Technology Office is holding a Proposers Day meeting covering the new Lasers for Universal Microscale Optical Systems (LUMOS) program. The goal of LUMOS is to transform optical microsystems through the co-integration of direct-emission materials, such as InP, GaN, and GaAs, with low-loss dielectric materials such as silicon and silicon nitride to create accessible, manufacturable systems. LUMOS also seeks to leverage new concepts in nanophotonic structures, non-reciprocity, and nonlinear processes, as well as alternative materials that possess strong electro-optic and novel properties, such as thin-film lithium niobate, III-nitrides, and other advanced compounds that enable new component functionality. Finally, LUMOS seeks to illustrate the benefits of complete component integration by pursuing DoD-relevant system demonstrations with compelling gains in performance and significant size, weight, and power (SWaP) advantages over current state-of-the-art solutions.
The general-purpose computer has remained the dominant computing architecture for the last 50 years, driven largely by the relentless pace of Moore’s Law. As this trajectory shows signs of slowing, however, it has become increasingly more challenging to achieve performance gains from generalized hardware, setting the stage for a resurgence in specialized architectures. Today’s specialized, application-specific integrated circuits (ASICs) — hardware customized for a specific application — offer limited flexibility and are costly to design, fabricate, and program.
Next-generation intelligent systems supporting Department of Defense (DoD) applications like artificial intelligence, autonomous vehicles, shared spectrum communication, electronic warfare, and radar require processing efficiency that is orders of magnitude beyond what is available through current commercial electronics. Reaching the performance levels required by these DoD applications however will require developing highly complex system-on-chip (SoC) platforms that leverage the most advanced integrated circuit technologies.