Defense Advanced Research Projects AgencyTagged Content List

Microchips and Components

Relating to miniaturized electronic circuitry and its components and features

Showing 45 results for Microchips + Electronics RSS
Microelectronics support nearly all Department of Defense (DoD) activities, enabling capabilities such as the global positioning system, radar, command and control, and communications. Ensuring secure access to leading-edge microelectronics, however, is a challenge. The changing global semiconductor industry and the sophistication of U.S. adversaries, who might target military electronic components, suggest the need for an updated microelectronics security framework.
Many essential military capabilities—including autonomous navigation, chemical-biological sensing, precision targeting and communications—increasingly rely upon laser-scanning technologies such as LIDAR (think radar that uses light instead of radio waves). These technologies provide amazing high-resolution information at long ranges but have a common Achilles heel: They require mechanical assemblies to sweep the laser back and forth. These large, slow opto-mechanical systems are both temperature- and impact-sensitive and often cost tens of thousands of dollars each—all factors that limit widespread adoption of current technologies for military and commercial use.
By combining complementary mindsets on the leading edges of electronic and radiofrequency device engineering, a pair of researchers in DARPA’s Young Faculty Award program have devised ultratiny, electronic switches that approximate inter-neuron communication. These highly adaptable nanoscale switches can toggle on and off so fast, and with such low loss, they could become the basis of not only computer and memory devices but also multi-function radiofrequency (RF) chips, which users might reprogram on the fly to behave first like a cell-phone’s signal emitter but then, say, as a collision-avoidance radar component or a local radio jammer.
Solid-state electronics began to overtake vacuum tubes in radios, computers and other electronic and radio frequency gadgetry more than 60 years ago. Now we live in a Silicon Age. Even so, vacuum electronic devices, whose origins date to the 19th century, touch our lives every day.
Demand for specialized integrated circuits for military electronics continues to surge exponentially with no end in sight. Systems that synchronize the activity of unmanned aerial vehicles; real-time conversion of raw radar data into tactically useful 3-D imagery; and instant access to high-resolution sensor feeds on the battlefield are only three examples of this reality.