Defense Advanced Research Projects AgencyTagged Content List

Algorithms

A process or rule set used for calculations or other problem-solving operations

Showing 34 results for Algorithms + AI RSS
Deep Purple aims to advance the modeling of complex dynamic systems using new information-efficient approaches that make optimal use of data and known physics at multiple scales. The program is investigating next-generation deep learning approaches that use not only high throughput multimodal scientific data from observations and controlled experiments (including behaviors such as phase transitions and chaos), but also of the known science of such systems at whatever scales it exists.
Machine learning has shown remarkable success across many application areas in recent years, leveraging advances in computing power and the availability of large sets of training data. It provides a tremendous opportunity to deploy data-driven systems in more complex and interactive tasks including personalized autonomy, agile robotics, self-driving vehicles, and smart cities. Despite dramatic progress, the machine learning community still lacks an understanding of the trade-offs and mathematical limitations of related technologies for a given domain, problem, or dataset.
In supervised machine learning (ML), the ML system learns by example to recognize things, such as objects in images or speech. Humans provide these examples to ML systems during their training in the form of labeled data. With enough labeled data, we can generally build accurate pattern recognition models.
| AI | Algorithms | Data |
Machine common sense has long been a critical—but missing—component of AI. Its absence is perhaps the most significant barrier between the narrowly focused AI applications we have today and the more general, human-like AI systems we would like to build in the future. The MCS program seeks to create the computing foundations needed to develop machine commonsense services to enable AI applications to understand new situations, monitor the reasonableness of their actions, communicate more effectively with people, and transfer learning to new domains.
The Physics of Artificial Intelligence (PAI) program is part of a broad DAPRA initiative to develop and apply “Third Wave” AI technologies to sparse data and adversarial spoofing, and that incorporate domain-relevant knowledge through generative contextual and explanatory models.