Defense Advanced Research Projects AgencyTagged Content List

Algorithms

A process or rule set used for calculations or other problem-solving operations

Showing 44 results for Algorithms RSS
From phony news on Web sites to terrorist propaganda on social media to recruitment videos posted by extremists, conflict in the information domain is becoming a ubiquitous addition to traditional battlespaces. Given the pace of growth in social media and other networked communications, this bustling domain of words and images—once relegated to the sidelines of strategic planning—is poised to become ever more critical to national security and military success around the globe.
As new defensive technologies make old classes of vulnerability difficult to exploit successfully, adversaries move to new classes of vulnerability. Vulnerabilities based on flawed implementations of algorithms have been popular targets for many years. However, once new defensive technologies make vulnerabilities based on flawed implementations less common and more difficult to exploit, adversaries will turn their attention to vulnerabilities inherent in the algorithms themselves.
In a target-dense environment, the adversary has the advantage of using sophisticated decoys and background traffic to degrade the effectiveness of existing automatic target recognition (ATR) solutions. Airborne strike operations against relocatable targets require that pilots fly close enough to obtain confirmatory visual identification before weapon release, putting the manned platform at extreme risk. Radar provides a means for imaging ground targets at safer and far greater standoff distances; but the false-alarm rate of both human and machine-based radar image recognition is unacceptably high. Existing ATR algorithms also require impractically large computing resources for airborne applications.  
New manufacturing technologies such as additive manufacturing have vastly improved the ability to create shapes and material properties previously thought impossible. Generating new designs that fully exploit these properties, however, has proven extremely challenging. Conventional design technologies, representations, and algorithms are inherently constrained by outdated presumptions about material properties and manufacturing methods. As a result, today’s design technologies are simply not able to bring to fruition the enormous level of physical detail and complexity made possible with cutting-edge manufacturing capabilities and materials.
Program Manager
Dr. Hava Siegelmann joined DARPA in July 2016 with the goal of developing programs that advance intelligence in computerized devices, focusing on life-long learning, context-aware adaptivity, and user-centered applications.