Defense Advanced Research Projects AgencyTagged Content List

Algorithms

A process or rule set used for calculations or other problem-solving operations

Showing 94 results for Algorithms RSS
In modern warfare, decisions are driven by information. That information can come in the form of thousands of sensors providing information, surveillance, and reconnaissance (ISR) data; logistics/supply-chain and personnel performance measurements; or a host of other sources and formats. The ability to exploit this data to understand and predict the world around us is an asymmetric advantage for the Department of Defense (DoD).
As new defensive technologies make old classes of vulnerability difficult to exploit successfully, adversaries move to new classes of vulnerability. Vulnerabilities based on flawed implementations of algorithms have been popular targets for many years. However, once new defensive technologies make vulnerabilities based on flawed implementations less common and more difficult to exploit, adversaries will turn their attention to vulnerabilities inherent in the algorithms themselves.
The Department of Defense (DoD) often leverages social and behavioral science (SBS) research to design plans, guide investments, assess outcomes, and build models of human social systems and behaviors as they relate to national security challenges in the human domain. However, a number of recent empirical studies and meta-analyses have revealed that many SBS results vary dramatically in terms of their ability to be independently reproduced or replicated, which could have real-world implications for DoD’s plans, decisions, and models. To help address this situation, DARPA’s Systematizing Confidence in Open Research and Evidence (SCORE) program aims to develop and deploy automated tools to assign "confidence scores" to different SBS research results and claims.
Deployed electronic systems increasingly require advanced processing capabilities, however the time and power required to access system memory – commonly referred to as the “memory bottleneck” – takes a significant toll on their performance. Any substantial improvement in electronic system performance will require a radical reduction in memory access time and overall dynamic power of the system. The use of a monolithic three-dimensional system-on-chip (SoC) stack to integrate memory and logic is one approach that could dramatically alter the memory bottleneck challenge.
In a target-dense environment, the adversary has the advantage of using sophisticated decoys and background traffic to degrade the effectiveness of existing automatic target recognition (ATR) solutions. Airborne strike operations against relocatable targets require that pilots fly close enough to obtain confirmatory visual identification before weapon release, putting the manned platform at extreme risk. Radar provides a means for imaging ground targets at safer and far greater standoff distances; but the false-alarm rate of both human and machine-based radar image recognition is unacceptably high. Existing ATR algorithms also require impractically large computing resources for airborne applications.