Defense Advanced Research Projects AgencyTagged Content List

Algorithms

A process or rule set used for calculations or other problem-solving operations

Showing 87 results for Algorithms RSS
The goal of the Modeling Adversarial Activity (MAA) program is to develop mathematical and computational techniques for modeling adversarial activity for the purpose of producing high-confidence indications and warnings of efforts to acquire, fabricate, proliferate, and/or deploy weapons of mass terror (WMTs). MAA assumes that an adversary’s WMT activities will result in observable transactions.
Universal quantum computers with millions of quantum bits, or qubits – which can represent a one, a zero, or a coherent linear combination of one and zero – would revolutionize information processing for commercial and military applications. Realizing that vision, however, is still decades away. The problem is the performance and reliability of quantum devices depend on the length of time the underlying quantum states can remain coherent. If you wait long enough, interactions with the environment will make the state behave like a conventional classical system, removing any quantum advantage. Often, this coherence time is significantly short, which makes it difficult to perform any meaningful computations.
The Physics of Artificial Intelligence (PAI) program is part of a broad DAPRA initiative to develop and apply “Third Wave” AI technologies to sparse data and adversarial spoofing, and that incorporate domain-relevant knowledge through generative contextual and explanatory models.
The unrelenting progression of Moore's Law has created a steady cadence to ever-smaller transistors and more powerful chips, allowing billions of transistors to be integrated on a single system-on-chip (SoC). However, engineering productivity has not kept pace with Moore's Law, leading to prohibitive increases in development costs and team sizes for leading-edge SoC design. To help manage the complexity of SoC development, design reuse in the form of Intellectual Property (IP) modules has become the primary strategy.
Computational capability is an enabler for nearly every military system, but increases in this capability are limited by available system power and constraints on the ability to dissipate heat. This is a challenge for embedded applications such as soldier-borne applications, UAVs and command and control systems on submarines. Today’s intelligence, surveillance and reconnaissance (ISR) systems have sensors that collect far more information than they can process in real time; as a result, what could be invaluable real-time intelligence data in the hands of our warfighters is simply discarded, or perhaps recorded and processed hours or days after it was collected.