Defense Advanced Research Projects AgencyTagged Content List

Algorithms

A process or rule set used for calculations or other problem-solving operations

Showing 74 results for Algorithms RSS
Computational capability is an enabler for nearly every military system, but increases in this capability are limited by available system power and constraints on the ability to dissipate heat. This is a challenge for embedded applications such as soldier-borne applications, UAVs and command and control systems on submarines. Today’s intelligence, surveillance and reconnaissance (ISR) systems have sensors that collect far more information than they can process in real time; as a result, what could be invaluable real-time intelligence data in the hands of our warfighters is simply discarded, or perhaps recorded and processed hours or days after it was collected.
From phony news on Web sites to terrorist propaganda on social media to recruitment videos posted by extremists, conflict in the information domain is becoming a ubiquitous addition to traditional battlespaces. Given the pace of growth in social media and other networked communications, this bustling domain of words and images—once relegated to the sidelines of strategic planning—is poised to become ever more critical to national security and military success around the globe.
Serial Interactions in Imperfect Information Games Applied to Complex Military Decision Making (SI3-CMD) builds on recent developments in artificial intelligence and game theory to enable more effective decisions in adversarial domains. SI3-CMD will explore several military decision making applications at strategic, tactical, and operational levels and develop AI/game theory techniques appropriate for their problem characteristics.
In modern warfare, decisions are driven by information. That information can come in the form of thousands of sensors providing information, surveillance, and reconnaissance (ISR) data; logistics/supply-chain and personnel performance measurements; or a host of other sources and formats. The ability to exploit this data to understand and predict the world around us is an asymmetric advantage for the Department of Defense (DoD).
As new defensive technologies make old classes of vulnerability difficult to exploit successfully, adversaries move to new classes of vulnerability. Vulnerabilities based on flawed implementations of algorithms have been popular targets for many years. However, once new defensive technologies make vulnerabilities based on flawed implementations less common and more difficult to exploit, adversaries will turn their attention to vulnerabilities inherent in the algorithms themselves.