Defense Advanced Research Projects AgencyTagged Content List

Transformative Materials

Relating to new or improved properties in materials

Showing 40 results for Materials + News RSS
07/17/2013
The intensity of light that propagates through glass optical fiber is fundamentally limited by the glass itself. A novel fiber design using a hollow, air-filled core removes this limitation and dramatically improves performance by forcing light to travel through channels of air, instead of the glass around it. DARPA’s unique spider-web-like, hollow-core fiber, design is the first to demonstrate single-spatial-mode, low-loss and polarization control—key properties needed for advanced military applications such as high-precision fiber optic gyroscopes for inertial navigation.
12/05/2013
The capability of orbital telescopes to see wide swaths of the earth at a time has made them indispensable for key national security responsibilities such as weather forecasting, reconnaissance and disaster response. Even as telescope design has advanced, however, one aspect has remained constant since Galileo: using glass for lenses and mirrors, also known as optics. High-resolution imagery traditionally has required large-diameter glass mirrors, which are thick, heavy, difficult to make and expensive. As the need for higher-resolution orbital imagery expands, glass mirrors are fast approaching the point where they will be too large, heavy and costly for even the largest of today’s rockets to carry to orbit.
| ISR | Materials | Space | SWAP |
06/05/2014
DARPA’s Z-Man program has demonstrated the first known human climbing of a glass wall using climbing devices inspired by geckos. The historic ascent involved a 218-pound climber ascending and descending 25 feet of glass, while also carrying an additional 50-pound load in one trial, with no climbing equipment other than a pair of hand-held, gecko-inspired paddles. The novel polymer microstructure technology used in those paddles was developed for DARPA by Draper Laboratory of Cambridge, Mass.
06/16/2014
Scientists and engineers in DARPA’s Defense Sciences Office (DSO) promote and exploit new discoveries across the frontiers of physics, chemistry, and mathematics to identify and accelerate potentially game-changing technologies for U.S. national security. After recently spinning off biological technologies into a new office, DSO’s investment portfolio, which continues to create new materials and explore the boundaries of physical phenomena, is expanding to include novel approaches to understanding, predicting, designing, and developing engineered complex systems.
07/10/2014
Military platforms—such as ships, aircraft and ground vehicles—rely on advanced materials to make them lighter, stronger and more resistant to stress, heat and other harsh environmental conditions. Currently, the process for developing new materials to field in platforms frequently takes more than a decade. This lengthy process often means that developers of new military platforms are forced to rely on decades-old, mature materials because potentially more advanced materials are still being tested and aren’t ready to be implemented into platform designs.