Defense Advanced Research Projects AgencyTagged Content List

Transformative Materials

Relating to new or improved properties in materials

Showing 15 results for Materials + Microstructures RSS
Additive manufacturing, including emerging “3D printing” technologies, is booming. Last year an astronaut on the International Space Station used a 3D printer to make a socket wrench in space, hinting at a future when digital code will replace the need to launch specialized tools into orbit. Here on Earth, the Navy is considering applications for additive manufacturing aboard ships, and a commercial aircraft engine company recently announced its first FAA-approved 3D-printed part.
For millennia, materials have mattered—so much so that entire eras have been named for them. From the Stone Age to the Bronze Age to the Iron Age and beyond, breakthroughs in materials have defined what was technologically possible and fueled revolutions in fields as diverse as electronics, construction and medicine. Today, DARPA is pursuing the next big advances in this fundamentally important domain.
DARPA published its Young Faculty Award (YFA) 2018 Research Announcement today, seeking proposals in 26 different topic areas—the largest number of YFA research areas ever solicited.
A unique class of engineered light-manipulating materials, known as metamaterials or structured materials, makes use of patterns of strongly interacting wavelength or sub-wavelength-sized elements. Because of these intricate internal and surface structures, new properties have emerged, some exhibiting behavior that has resulted in rewriting long-understood “laws” for how light and other electromagnetic (EM) waves interact with materials. These materials have been opening up new options for controlling EM waves in many technological arenas, among them imaging, thermal control, and frequency conversion. Specific applications include night-vision, heat reflection and management in aircraft engines, and temperature regulation of electronics on satellites in the hot-and-cold extremes of space.
Hypersonic vehicles fly through the atmosphere at incredibly high speeds, creating intense friction with the surrounding air as they travel at Mach 5 or above – five times faster than sound travels. Developing structures that can withstand furnace-like temperatures at such high speeds is a technical challenge, especially for leading edges that bear the brunt of the heat.