Defense Advanced Research Projects AgencyTagged Content List

Transformative Materials

Relating to new or improved properties in materials

Showing 16 results for Materials + History RSS
01/01/2012
Intrachip/Interchip Enhanced Cooling (ICECool) The increased density of electronic components and subsystems in military electronic systems exacerbates the thermal management challenges facing engineers. The military platforms that host these systems often cannot physically accommodate the large cooling systems needed for thermal management, meaning that heat can be a limiting factor for performance of electronics and embedded computers.
01/01/1960
In 1960, ARPA helped establish what now is the burgeoning field of materials science and engineering by announcing the first three contracts of the Agency’s Interdisciplinary Laboratory (IDL) program. Following these initial four-year renewable contracts to Cornell University, the University of Pennsylvania, and Northwestern University, the Agency awarded nine more IDL contracts around the country. The program lasted just over a decade when, in 1972, the National Science Foundation (NSF) took over the program and changed its name to the Materials Research Laboratories (MRL) program.
01/01/1960
In the 1960s and early 1970s ARPA funded Interdisciplinary Laboratories (IDLs) at a dozen universities, helping to create a catalytic new research field known as materials science and engineering.
01/01/1972
New materials that perform better than previous ones or with unprecedented properties open pathways to new and improved technologies. F-15 and F-16 fighter aircraft, still in use by the U.S. Air Force today, owe much of their performance advancements to materials technologies that emerged from DARPA materials development programs conducted in the 1970s and early 1980s. One of many notable successes from these efforts was the development of rare-earth permanent magnets with magnetic strengths far stronger than conventional magnetic materials and, in some cases, over larger operational conditions. The samarium- and cobalt-based rare-earth magnetic material Sm2Co17, for example, remains reliable over the entire militarily relevant temperature range of -55°C to 125°C. These magnets ultimately assumed a role in a key component of the AN/ALQ-135 electronic warfare system, permitting operation of the F-15 to 70,000 feet in altitude.
01/01/1989
The microelectronics revolution led to a ubiquity of fingernail-sized chips bearing integrated circuits made of large numbers of tiny transistors, interconnects, and other miniaturized components and devices. DARPA challenged the research community to achieve the tight integration of chips to the scale of the entire semiconductor wafer from which, normally, hundreds of chips would be diced and then packaged into separate components of electronic systems. Among the motivations were the expectations of higher computation or storage capability in a smaller volumes, higher-reliability systems; and reduced power consumption of the wafer-based systems. The research included work in materials, defect management, manufacturing techniques, among other areas. The approach opened up novel engineering opportunities particularly for fabricating multi-element, phased-array, antenna modules on gallium-arsenide wafer for both transmitting and receiving signals.