Defense Advanced Research Projects AgencyTagged Content List

Transformative Materials

Relating to new or improved properties in materials

Showing 131 results for Materials RSS
01/01/1970

From 1968 to 1972, ARPA funded a program with the Perkin Elmer Corporation to develop the technology for fabricating large, stable, low-weight mirrors from beryllium, a featherweight metal, for use in space applications. The early focus of the program was in developing and evaluating improved forms of beryllium. Perkin Elmer was successful in improving the thermal stability of beryllium surfaces tenfold, and developing materials-processing techniques (powder metallurgy, hot isostatic processing, pressureless sintering) for making it possible to fabricate large beryllium structures.

Further ARPA- funded efforts led to surface-polishing techniques to dramatically reduce scattering of infrared wavelengths, the successful development of thin-film coatings techniques, and a demonstration of the long-term stability of beryllium surfaces. DoD applications included 1) the all-beryllium, 15-inch aperture, long-wave infrared (IR) telescope system for the Midcourse Airborne Target Signature program run by what was then known as the Advanced Ballistic Missile Defense Agency; 2) the fabrication of a lightweight, 40-inch, aspheric mirror for the U.S. Air Force; and 3) experimental near-net-shape production of a key component of the Trident 11 MK6 guidance system. NASA also applied the technology in the form of a 85-cm beryllium mirror assembly for NASA Jet Propulsion Laboratory (JPL)'s IR Telescope Technology Testbed for eventual use in NASA's Space Infrared Telescope Facility (later renamed the Spitzer Space Telescope), which was launched in 2003 and as of 2018 was still in operation.

01/01/1975

ARPA began a program to demonstrate and encourage the use of brittle high-temperature materials in engineering design, with an eye on ceramic components for gas turbine applications. The approach included major efforts in ceramic design, materials development, fabrication process development, and test and evaluation methodology. By the end of the program in 1979, one of the performers, a team with Ford, demonstrated that design with brittle materials in highly stressed applications is possible and, in particular, that ceramics are feasible as major structural components in gas turbine engines. This program started the "Ceramic Fever" that spread throughout the world in the late 1970s and early 1980s.

The successful demonstration of ceramics in a gas turbine environment led to the establishment of ceramic programs in virtually every automotive or engine company in the world, in other U.S. government agencies, and in several foreign countries.

01/01/1991

In addition to supporting advanced materials development since its early years, DARPA has at times been called upon to identify technologies for specific near-term applications. One of these tasks occurred for Operation Desert Storm (1991-1992) when ground forces experienced a critical need for more effective armor. The DARPA solution in this case, particularly for roof protection for the U.S. Marine Corps’ Light Armored Vehicles (LAVs) against artillery, was to ask the Lanxide Corporation to modify its cermet (ceramic/metallic) process and to work with a partner Foster Miller to produce appliqué armor.

From 1984 to 1986, DARPA supported the materials research and engineering that led to these cermet materials. With DARPA funding, 75 LAVs were up-armored with the tough composite materials. In the early 1990s, M-9 Armored Combat Earthermoves (ACE) also employed this lightweight armor. Variations of these cermet materials have been used for cockpit armor by the U.S. Air Force in C-130, C-141, and C-14 aircraft in Bosnia.

The Lanxide material has also been employed as high-power-density heat sinks for the F/A-18 and F-16 radars, turbine tip shrouds, commercial satellite heat sinks, very stiff parts for semiconductor lithography machines, and as vehicle brake components. All of the military and civil uses of Lanxide evolved directly from DARPA’s program. The military uses were under DARPA support, and then transitioned to U.S. Army and Air Force programs.

01/01/1977
In the early days of DARPA’s work on stealth technology, Have Blue, a prototype of what would become the F-117A, first flew successfully in 1977. The success of the F-117A program marked the beginning of the stealth revolution, which has had enormous benefits for national security.
01/01/1980
DARPA established the Defense Sciences Office (DSO) in 1980, combining the Nuclear Monitoring Research Office, materials science research, and cybernetic technology efforts into a single office. Since its inception, DSO has spawned two additional technology offices at DARPA: the Microsystems Technology Office (MTO) in 1992 and the Biological Technologies Office (BTO) in 2014.