Defense Advanced Research Projects AgencyTagged Content List

Maritime Systems

Manned and unmanned surface and undersea systems, including vehicles, robotics and supporting technologies

Showing 10 results for Maritime + Resources RSS
DARPA occasionally stands up temporary special projects offices focused on coordinating, developing and/or deploying advanced capabilities on an accelerated time scale. These efforts fall outside of DARPA’s typical program structure and leverage the Agency’s unique organization and skill sets to make rapid progress in technology areas that are critical to national security. DARPA currently operates one special projects office: the Aerospace Projects Office (APO).
The mission of the Tactical Technology Office (TTO) is to transform the future of warfighting through high-risk, high-payoff development and demonstration of advanced space, air, maritime, and ground weapons, platforms, systems and technologies.
On January 25, 2018, DARPA took its Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) program to one of the best finish lines the Agency knows of—an official transfer of a technology to a follow-on steward of development or to an end user in the field. In this case, following a period of open-water tests of the program’s demonstration vessel—dubbed “Sea Hunter”—to the Office of Naval Research (ONR), the latter organization officially took over responsibility of developing the revolutionary prototype vehicle as the Medium Displacement Unmanned Surface Vehicle (MDUSV).

From 1971 to 1974, ARPA supported research on "glassy" carbon, a unique foam material composed of pure carbon and that combined low weight, high strength, and chemical inertness. The program led to techniques for producing the material with an exceptionally porous, high surface area combined with high rigidity, low resistance to fluid flow, and resistance to very high temperatures in a non-oxidizing environment.

Eyed originally for roles in electro-chemistry because of its high surface area, the material proved suitable for surgical implants, especially heart valves. Development of the valves began about three years after the end of the ARPA program, with production commencing in 1985. In 1990, the U.S. Food and Drug Administration (FDA) gave its approval for using glassy carbon in implants in a valve market that grew within the decade to 100,000 units and a market value of $200 million. A related form, pyrolytic carbon, remains common in the inner orifice and leaflets of artificial valves.


With the blue water threat of free-ranging, nuclear-armed Soviet submarines coming to a head in 1971, the Department of Defense (DoD) assigned DARPA a singular mission: Revamp the U.S. military’s anti-submarine warfare (ASW) capabilities to track enemy subs under the open ocean where the U.S. Navy’s existing Sound Surveillance System (SOSUS) was falling short. At the time, the U.S. Navy was already working on what would become its Surveillance Towed Array Sensor System, or SURTASS, through which surface ships towed long, mobile arrays of sensors to listen for submarine activity. Telemetry and data-handling issues greatly limited the system’s capabilities.

That’s when DARPA committed funds for the LAMBDA program to modify oil-industry-designed seismic towed arrays so they could detect submarine movement. DARPA-funded scientists began experiments at submarine depths, and soon generated spectacular results. In 1981, the DoD gave quick approval for production of a LAMBDA-enhanced SURTASS array, without requiring further study, a highly unusual decision for a program that had experienced a major technology shift late in the game. The system—which with DARPA participation would become enhanced by way of leading-edge computational tools, satellite-based data linkages, and computer networking—would become the Navy’s go-to method for tracking mobile Soviet subs for the remainder of the Cold War. By 1985, Secretary of the Navy John Lehman was so confident in his force’s ability to keep tabs on elusive Soviet boomers (a nickname for ballistic missile submarines), he declared that in the event the Cold War turned hot, he would attack Soviet subs “in the first five minutes of the war.”