Defense Advanced Research Projects AgencyTagged Content List

Maritime Systems

Manned and unmanned surface and undersea systems, including vehicles, robotics and supporting technologies

Showing 20 results for Maritime + Programs RSS
The Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) program is developing an unmanned vessel optimized to robustly track quiet diesel electric submarines.
The Arctic region is poised for greater regional significance as polar ice retreats in coming decades. Ship traffic likely will increase during summer months, and commercial activity focused on the sea floor is expected to grow. The Arctic is largely isolated, vast, and environmentally extreme. Remote sensing may offer affordable advantages over traditional methods of monitoring the region—aircraft, satellites or manned ships and submarines—due to the great distances in the Arctic.
| EW | ISR | Maritime | Systems |
Unmanned underwater vehicles (UUVs) have inherent operational and tactical advantages such as stealth and surprise. UUV size, weight and volume are constrained by the handling, launch and recovery systems on their host platforms, however, and UUV range is limited by the amount of energy available for propulsion and the power required for a given underwater speed. Current state-of-the-art energy sources are limited by safety and certification requirements for host platforms.
The Cross-Domain Maritime Surveillance and Targeting (CDMaST) program seeks to identify and implement architectures consisting of novel combinations of manned and unmanned systems to deny ocean environments to adversaries as a means of projecting power. By exploiting promising new developments in unmanned systems along with emerging long-range weapon systems, the program aims to develop an advanced, integrated undersea and above-sea warfighting capability able to execute long-range attacks against submarines and ships over large contested maritime areas.
The quiet submarine is an asymmetric threat in terms of its cost and consequential growth in numbers relative to our legacy maritime platforms. In addition, these submarines have trended toward lower acoustic signature levels and have grown in lethality. The Distributed Agile Submarine Hunting (DASH) program intends to reverse the asymmetric advantage of this threat through the development of advanced standoff sensing from unmanned systems.