Defense Advanced Research Projects AgencyTagged Content List

Intelligence, Surveillance and Reconnaissance Exploitation

Portfolio of technologies for tactical and strategic situational awareness

Showing 37 results for ISR + Programs RSS
State-of-the-art military sensors rely on “active electronics” to detect vibration, light, sound or other signals for situational awareness and to inform tactical planning and action. That means the sensors constantly consume power, with much of that power spent processing what often turns out to be irrelevant data. This power consumption limits sensors’ useful lifetimes to a few weeks or months with even the best batteries and has slowed the development of new sensor technologies and capabilities. The chronic need to service or redeploy power-depleted sensors is not only costly and time-consuming but also increases warfighter exposure to danger.
DARPA's Oceans of Things program seeks to enable persistent maritime situational awareness over large ocean areas by deploying thousands of small, low-cost floats that could form a distributed sensor network. Each smart float would contain a suite of commercially available sensors to collect environmental data-such as ocean temperature, sea state, and location-as well as activity data about commercial vessels, aircraft, and even maritime mammals moving through the area. The floats would transmit data periodically via satellite to a cloud network for storage and real-time analysis.
DARPA’s OFFensive Swarm-Enabled Tactics (OFFSET) program envisions future small-unit infantry forces using swarms comprising upwards of 250 small unmanned aircraft systems (UASs) and/or small unmanned ground systems (UGSs) to accomplish diverse missions in complex urban environments. By leveraging and combining emerging technologies in swarm autonomy and human-swarm teaming, the program seeks to enable rapid development and deployment of breakthrough capabilities.
More than 7,000 spacecraft have been launched from Earth, the vast majority of which are satellites that are no longer operational. These defunct objects, now free-orbiting debris, threaten the more than 1,200 satellites that are currently operated by commercial and government entities around the globe. The number of space debris that threaten important communications, weather monitoring, navigation services and imagery satellites is growing.
Existing speech signal processing technologies are inadequate for most noisy or degraded speech signals that are important to military intelligence.