Defense Advanced Research Projects AgencyTagged Content List

Intelligence, Surveillance and Reconnaissance Exploitation

Portfolio of technologies for tactical and strategic situational awareness

Showing 37 results for ISR + Programs RSS
Current infrared systems either have a narrow field of view, slow frame rates or are low resolution. DARPA's Autonomous Real-Time Ground Ubiquitous Surveillance - Infrared (ARGUS-IR) program will break this paradigm by producing a wide-field-of-view IR imaging system with frame rates and resolution that are compatible with the tracking of dismounted personnel at night. ARGUS-IR will provide at least 130 independently steerable video streams to enable real-time tracking of individual targets throughout the field of view. The ARGUS-IR system will also provide continuous updates of the entire field of view for enhanced situational awareness.
The Behavioral Learning for Adaptive Electronic Warfare (BLADE) program is developing the capability to counter new and dynamic wireless communication threats in tactical environments. BLADE is enabling a shift from today's manual-intensive lab-based countermeasure development approach to an adaptive, in-the-field systems approach. The program will achieve this by developing novel machine-learning algorithms and techniques that can rapidly detect and characterize new radio threats, dynamically synthesize new countermeasures, and provide accurate battle damage assessment based on over-the-air observable changes in the threat.
| EW | ISR | Spectrum |
Dominance of the radio frequency (RF) spectrum is critical to successful U.S. military operations. Today, we do this using discrete radar, electronic warfare (EW), and communication payloads that are separately designed, procured, and integrated on platforms. These payloads typically use dedicated apertures, are realized with tightly coupled hardware and software, and are not well-coordinated in their use of spectrum.
Based on promising results obtained under the Crosshairs program, the C-Sniper program will develop the capability to detect and neutralize enemy snipers before they can engage U.S. Forces, with the goal of delivering a field testable prototype suitable for experimentation as an integrated part of the DARPA Crosshairs system. The C-Sniper system will operate day and night from a moving military vehicle and provide the operator with sufficient information to make a timely engagement decision.
The DARPA Subterranean (SubT) Challenge aims to develop innovative technologies that would augment operations underground. The SubT Challenge will explore new approaches to rapidly map, navigate, search, and exploit complex underground environments, including human-made tunnel systems, urban underground, and natural cave networks.