Defense Advanced Research Projects AgencyTagged Content List

Intelligence, Surveillance and Reconnaissance Exploitation

Portfolio of technologies for tactical and strategic situational awareness

Showing 37 results for ISR + Programs RSS
Military sensor systems typically require between three and eight years to complete, resulting in sensor technology unable to keep pace with rapidly evolving mission needs. Commercial systems of similar complexity, forced by competitive pressures, are routinely developed in one to two years.
Current airborne electronic warfare (EW) systems must first identify a threat radar to determine the appropriate preprogrammed electronic countermeasure (ECM) technique. This approach loses effectiveness as radars evolve from fixed analog systems to programmable digital variants with unknown behaviors and agile waveforms. Future radars will likely present an even greater challenge as they will be capable of sensing the environment and adapting their transmissions and signal processing to maximize performance and mitigate interference effects.
| EW | ISR | Spectrum |
Airspace for the flying public today is perpetually congested yet remarkably safe, thanks in no small part to a well-established air traffic control system that tracks, guides and continuously monitors thousands of flights a day. When it comes to small unmanned aerial systems (UAS) such as commercial quadcopters, however, no such comprehensive tracking system exists. And as off-the-shelf UAS become less expensive, easier to fly, and more adaptable for terrorist or military purposes, U.S. forces will increasingly be challenged by the need to quickly detect and identify such craft—especially in urban areas, where sight lines are limited and many objects may be moving at similar speeds.
The Arctic region is poised for greater regional significance as polar ice retreats in coming decades. Ship traffic likely will increase during summer months, and commercial activity focused on the sea floor is expected to grow. The Arctic is largely isolated, vast, and environmentally extreme. Remote sensing may offer affordable advantages over traditional methods of monitoring the region—aircraft, satellites or manned ships and submarines—due to the great distances in the Arctic.
| EW | ISR | Maritime | Systems |
Precise timing is essential across DoD systems, including communications, navigation, electronic warfare, intelligence systems reconnaissance, and system-of-systems platform coordination, as well as in national infrastructure applications in commerce and banking, telecommunications, and power distribution. Improved clock performance throughout the timing network, particularly at point-of-use, would enable advanced collaborative capabilities and provide greater resilience to disruptions of timing synchronization networks, notably by reducing reliance on satellite-based global navigation satellite system (GNSS) timing signals.