Defense Advanced Research Projects AgencyTagged Content List

Integration

Compatible interconnection of disparate components and systems

Showing 34 results for Integration + News RSS
03/25/2020
Under DARPA’s Photonics in the Package for Extreme Scalability (PIPES) program, researchers from Intel and Ayar Labs have demonstrated early progress towards improving chip connectivity with photons – or light. Signaling over optical fibers enables the internet today and optical transceivers are ubiquitous in data centers, yet digital systems still rely upon the movement of electrons over metal wires to push data between integrated circuits (ICs) on a board. Increasingly, the limitations of electrical signaling from the chip package restrict overall bandwidth and signaling efficiency, throttling the performance of advanced systems.
03/27/2020
The space domain is critical to national security. It also has become increasingly chaotic and crowded over the past decade as the burgeoning space industry launches constellations of satellites. To conduct their missions, military commanders need timely and accurate information from space assets, as well as robust and reliable communications.
06/17/2020
From August 18-20, DARPA will host its third Electronics Resurgence Initiative (ERI) Summit and Microsystems Technology Office (MTO) Symposium. The annual event brings together leaders from across the electronics ecosystem – spanning government, defense, academia, and industry – to foster collaboration and share technical progress on DARPA’s five-year, $1.5 billion dollar investment into the advancement of the U.S. semiconductor industry.
06/18/2020
Optical frequency synthesizers – systems that output laser beams at precise and stable frequencies – have proven extremely valuable in a variety of scientific endeavors, including space exploration, gas sensing, control of quantum systems, and high-precision light detection and ranging (LIDAR). While they provide unprecedented performance, the use of optical frequency synthesizers has largely been limited to laboratory settings due to the cost, size, and power requirements of their components. To reduce these obstacles to widespread use, DARPA launched the Direct On-Chip Digital Optical Synthesizer (DODOS) program in 2014. Key to the program is the miniaturization of necessary components and their integration into a compact module, enabling broader deployment of the technology while unlocking new applications.