Defense Advanced Research Projects AgencyTagged Content List

Air Systems

Manned and unmanned aerial systems, including fixed-wing and rotary-wing aircraft and supporting technologies

Showing 13 results for Air + Countermeasures RSS
DARPA’s Strategic Technology Office (STO) is focused on technologies that enable fighting as a network to increase military effectiveness, cost leverage, and adaptability.
01/01/1977

In the early 1970s, a DARPA study brought to light the extent of vulnerabilities of U.S. aircraft and their on-board equipment to detection and attack by adversaries, who were deploying new advanced air-defense missile systems. These systems integrated radar-guided surface-to-air missiles (SAMs) and air-launched radar-guided missiles, all networked with early-warning, acquisition, and targeting radars, and coordinated within sophisticated command and control frameworks.

To mitigate these growing threats, DARPA embarked on a program to develop strategies and technologies for reducing radar detectability, including the reduction of radar cross section through a combination of shaping (to minimize the number of radar return spikes) and radar absorbent materials; infrared shielding, exhaust cooling and shaping, and enhanced heat dissipation; reduced visual signatures; active signature cancellation; inlet shielding; and windshield coatings.

In the mid-1970s, DARPA oversaw the development of HAVE Blue, the first practical combat stealth aircraft, which made its first test flight by the end of 1977. This led to the procurement by the Air Force of the F-117A stealth fighter, which became operational in October 1983. A follow-on development, the TACIT Blue aircraft, could operate radar sensors while maintaining its own low radar cross-section. This laid foundations for development of the B-2 stealth bomber.

Stealth aircraft destroyed key targets in conflicts in Iraq, both in the 1991 Desert Storm operation and in 2003 during Operation Iraqi Freedom; in Afghanistan during Operation Enduring Freedom in 2001; and in Libya in 2011. Complementing the key contributions of stealth capabilities in these missions was Department of Defense’s use of other technologies, including DARPA-enabled precision-guided munitions, which were deployed by stealth and non-stealth aircraft. Since their initial development and deployment, stealth technologies have been applied to a wide range of weapon systems and military platforms, among them missiles, helicopters, ground vehicles and ships.

08/11/2016
The rapid evolution of small unmanned air systems (sUAS) technologies is fueling the exponential growth of the commercial drone sector, creating new asymmetric threats for warfighters. sUASs’ size and low cost enable novel concepts of employment that present challenges to current defense systems. These emerging irregular systems and concepts of operations in diverse environments require technology advancements to quickly detect, identify, track, and neutralize sUASs while mitigating collateral damage and providing flexibility to operations in multiple mission environments.
10/24/2016
DARPA’s Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) program has developed and built a technology demonstration vessel that is currently undergoing open-water testing off the coast of California and recently set sail with its first payload: a prototype of a low-cost, elevated sensor mast developed through the Agency’s Towed Airborne Lift of Naval Systems (TALONS) research effort.
06/23/2017
DARPA’s Strategic Technology Office (STO) is hosting a “Sync with STO” event on August 2 - 3, 2017, designed to familiarize attendees with STO’s mission, problem spaces, program managers (PMs), and technology interests. The event aims to facilitate technical discussion between STO PMs and attendees that explore innovative and revolutionary ideas for addressing national security challenges.