Defense Advanced Research Projects AgencyTagged Content List

Air Systems

Manned and unmanned aerial systems, including fixed-wing and rotary-wing aircraft and supporting technologies

Showing 163 results for Air RSS
06/11/2014
DARPA and the Office of Naval Research (ONR) recently signed a Memorandum of Agreement (MOA) on a joint DARPA/Navy research and development program called “Tern.” This joint effort builds upon the existing work of DARPA’s Tactically Exploited Reconnaissance Node program, or “TERN,” which has been exploring concepts for a long-endurance and long-range aircraft that would operate from a variety of Navy ships.
07/10/2014
Military platforms—such as ships, aircraft and ground vehicles—rely on advanced materials to make them lighter, stronger and more resistant to stress, heat and other harsh environmental conditions. Currently, the process for developing new materials to field in platforms frequently takes more than a decade. This lengthy process often means that developers of new military platforms are forced to rely on decades-old, mature materials because potentially more advanced materials are still being tested and aren’t ready to be implemented into platform designs.
09/18/2014
Degraded visibility—which encompasses diverse environmental conditions including severe weather, dust kicked up during takeoff and landing and poor visual contrast among different parts of terrain—often puts both the safety and effectiveness of tactical helicopter operations at risk. Current sensor systems that can provide the necessary visualization through obscurants struggle with latency and are too large, heavy and power-intensive to comply with military rotary wing operations.
| Air | ISR | Sensors | SWAP |
11/09/2014
Military air operations typically rely on large, manned, robust aircraft, but such missions put these expensive assets—and their pilots—at risk. While small unmanned aircraft systems (UAS) can reduce or eliminate such risks, they lack the speed, range and endurance of larger aircraft. These complementary traits suggest potential benefits in a blended approach—one in which larger aircraft would carry, launch and recover multiple small UAS. Such an approach could greatly extend the range of UAS operations, enhance overall safety, and cost-effectively enable groundbreaking capabilities for intelligence, surveillance and reconnaissance (ISR) and other missions.
12/22/2014
Military teams patrolling dangerous urban environments overseas and rescue teams responding to disasters such as earthquakes or floods currently rely on remotely piloted unmanned aerial vehicles to provide a bird’s-eye view of the situation and spot threats that can’t be seen from the ground. But to know what’s going on inside an unstable building or a threatening indoor space often requires physical entry, which can put troops or civilian response teams in danger.