Defense Advanced Research Projects AgencyTagged Content List

Air Systems

Manned and unmanned aerial systems, including fixed-wing and rotary-wing aircraft and supporting technologies

Showing 148 results for Air RSS
04/06/2015
Close air support (CAS)—delivery of airborne munitions to support ground forces—is difficult and dangerous because it requires intricate coordination between combat aircrews and dismounted ground forces (for example, joint terminal attack controllers, or JTACs). DARPA’s Persistent Close Air Support (PCAS) program focuses on technologies to enable sharing of real-time situational awareness and weapons systems data through approaches designed to work with almost any aircraft. PCAS envisions more precise, prompt and easy air-ground coordination for CAS and other missions under stressful operational conditions and seeks to minimize the risk of friendly fire and collateral damage by enabling the use of smaller munitions to hit smaller, multiple or moving targets.
05/07/2015
Tern, a joint program between DARPA and the U.S. Navy’s Office of Naval Research (ONR), seeks to give forward-deployed small ships the unprecedented capacity to serve as mobile launch and recovery platforms for medium-altitude, long-endurance unmanned aerial systems (UAS). These systems would provide long-range intelligence, surveillance and reconnaissance (ISR) and other capabilities over greater distances and time periods than helicopters and would require far less dedicated infrastructure resources than conventional fixed-wing manned and unmanned aircraft.
08/28/2015
For decades, U.S. military air operations have relied on increasingly capable multi-function manned aircraft to execute critical combat and non-combat missions. Adversaries’ abilities to detect and engage those aircraft from longer ranges have improved over time as well, however, driving up the costs for vehicle design, operation, and replacement.
09/10/2015
Helicopters are incredibly maneuverable in the air, but during landing and takeoff their traditional skid- and wheel-based landing gear requires stable, flat surfaces—surfaces that are often unavailable in helicopter-needy environs such as forward operating areas, ships at sea and natural-disaster zones. Having the ability to land on and take off from angled, irregular and moving surfaces would greatly expand the effectiveness of helicopters across many military and national security missions.
09/17/2015
DARPA recently demonstrated its Persistent Close Air Support (PCAS) prototype system on an A-10 Thunderbolt II attack aircraft, marking the system’s debut on a U.S. Air Force platform. The tests, which involved 50 successful sorties near Nellis Air Force Base in Nevada, showed that a warfighter serving as a joint terminal attack controller (JTAC) on the ground could, in seamless coordination with a pilot, successfully command an airstrike with as few as three clicks on a tablet.