Defense Advanced Research Projects AgencyTagged Content List

Injury and Trauma

Relating to diagnosis and treatment of grievous physical and mental injury

Showing 10 results for Injury + Programs RSS
The Bioelectronics for Tissue Regeneration (BETR) program will develop technology aimed at speeding warfighter recovery, and thus resilience, by directly intervening in wound healing. To do this, researchers will build an adaptive system that uses actuators to biochemically or biophysically stimulate tissue, sensors to track the body’s complex response to that stimulation, and adaptive learning algorithms to integrate sensor data and dictate intervention to the actuators.
The Biostasis program aims to extend the time for lifesaving medical treatment, often referred to as “the Golden Hour,” following traumatic injury or acute infection, thus increasing survivability for military personnel operating in far-forward conditions with limited access to medical professionals or trauma centers. To do so, Biostasis is developing novel chemical biology approaches that reversibly and controllably slow biological systems without cold-chain to stabilize and protect their functional capacity until medical intervention is possible.
The Bridging the Gap Plus (BG+) program aims to develop new approaches for treating spinal cord injury by integrating injury stabilization, regenerative therapy, and functional restoration. To achieve this combinatorial approach, BG+ teams will build two systems of implantable and adaptive devices. The first system will reduce injury effects during the early phases of spinal cord injury.
The Electrical Prescriptions (ElectRx) program aims to support military operational readiness by reducing the time to treatment, logistical challenges, and potential off-target effects associated with traditional medical interventions for a wide range of physical and mental health conditions commonly faced by our warfighters. ElectRx seeks to deliver non-pharmacological treatments for pain, general inflammation, post-traumatic stress, severe anxiety, and trauma that employ precise, closed-loop, non-invasive modulation of the patient’s peripheral nervous system.
With a focus on wounded warriors and facilitating their return to military service, the Hand Proprioception and Touch Interfaces (HAPTIX) program is pursuing key technologies to enable precision control of and sensory feedback from sensor-equipped upper-limb prosthetic devices. If successful, the resulting system would provide users near-natural control of prosthetic hands and arms via bi-directional peripheral nerve implants. The program has a strong focus on technology handoff and aims to create and transition clinically relevant technology in support of wounded warriors suffering from single or multiple limb loss.