Defense Advanced Research Projects AgencyTagged Content List

DARPA History

History of DARPA and its accomplishments

Showing 157 results for History RSS
01/01/1970

The Camp Sentinel Radar penetrated foliage to detect infiltrators near U.S. deployments and was a fast turnaround,Vietnam-era development of advanced technology. Camp Sentinel responded to a military need for intruder detection with enough accuracy to direct fire. DARPA recommended a foliage penetration radar, which was completed within two years at a direct cost of $2 million. Camp Sentinel radar prototypes were field-tested in Vietnam in 1968 and retained by the troops for use for the rest of the war.

The Camp Sentinel technology pioneered the development of radar in hostile jungle conditions, which feature absorption and refraction by foliage in high-clutter environments, among other challenges. The Camp Sentinel radar project developed clutter rejection processing techniques, which were also later used by commercial acoustic-based intruder detectors.

| History | ISR |
01/01/1975

ARPA began a program to demonstrate and encourage the use of brittle high-temperature materials in engineering design, with an eye on ceramic components for gas turbine applications. The approach included major efforts in ceramic design, materials development, fabrication process development, and test and evaluation methodology. By the end of the program in 1979, one of the performers, a team with Ford, demonstrated that design with brittle materials in highly stressed applications is possible and, in particular, that ceramics are feasible as major structural components in gas turbine engines. This program started the "Ceramic Fever" that spread throughout the world in the late 1970s and early 1980s.

The successful demonstration of ceramics in a gas turbine environment led to the establishment of ceramic programs in virtually every automotive or engine company in the world, in other U.S. government agencies, and in several foreign countries.

01/01/1991

In addition to supporting advanced materials development since its early years, DARPA has at times been called upon to identify technologies for specific near-term applications. One of these tasks occurred for Operation Desert Storm (1991-1992) when ground forces experienced a critical need for more effective armor. The DARPA solution in this case, particularly for roof protection for the U.S. Marine Corps’ Light Armored Vehicles (LAVs) against artillery, was to ask the Lanxide Corporation to modify its cermet (ceramic/metallic) process and to work with a partner Foster Miller to produce appliqué armor.

From 1984 to 1986, DARPA supported the materials research and engineering that led to these cermet materials. With DARPA funding, 75 LAVs were up-armored with the tough composite materials. In the early 1990s, M-9 Armored Combat Earthermoves (ACE) also employed this lightweight armor. Variations of these cermet materials have been used for cockpit armor by the U.S. Air Force in C-130, C-141, and C-14 aircraft in Bosnia.

The Lanxide material has also been employed as high-power-density heat sinks for the F/A-18 and F-16 radars, turbine tip shrouds, commercial satellite heat sinks, very stiff parts for semiconductor lithography machines, and as vehicle brake components. All of the military and civil uses of Lanxide evolved directly from DARPA’s program. The military uses were under DARPA support, and then transitioned to U.S. Army and Air Force programs.

01/01/2015
To accelerate the development of new infectious disease forecasting methods, DARPA launched its CHIKV Challenge. The chikungunya virus (CHIKV) first appeared in the Americas in 2013 but was quickly spreading and by mid-2015, the Pan-American Health Organization (PAHO) had tallied close to 1.4 million suspected cases and more than 33,000 confirmed. Spread by mosquitoes, chikungunya is rarely fatal but can cause debilitating joint and muscle pain, fever, nausea, fatigue, and rash, and poses a growing public health and national security risk.
01/01/2005
The Chip-Scale Atomic Clock (CSAC) program created ultra-miniaturized, low-power, atomic time and frequency reference units. The development of CSAC enabled ultra-miniaturized and ultra-low power atomic clocks for high-security Ultra High Frequency (UHF) communication and jam-resistant GPS receivers.
| History | PNT |