Defense Advanced Research Projects AgencyTagged Content List

DARPA History

History of DARPA and its accomplishments

Showing 157 results for History RSS
01/01/1963

The ARPA Vela program developed sensors to detect nuclear explosions in space, the upper atmosphere, and underwater to support the 1963 Limited Nuclear Test Ban Treaty, under which the United States, Great Britain, and the Soviet Union banned atmospheric tests of nuclear weapons. The first VELA sensors, deployed on a pair of satellites launched three days after the treaty was signed, were designed to monitor for optical and electromagnetic signatures of nuclear explosions in the atmosphere.

Later in the 1960s and 1970s, DARPA oversaw the development of the World Wide Standardized Seismograph Network (WWSSN) for detecting underground nuclear tests. The Agency also helped expand detection technologies globally and internationally by running workshops, funding research projects in other countries, and championing community-building initiatives.

01/01/1989
First proposed in 1977 by Japanese researcher Kenichi Iga, the vertical-cavity surface-emitting laser (VCSEL) would have characteristics similar to light-emitting diodes and could be coupled to optical fibers. Over the next decades, a small research community began chipping away at the technical challenges it would take to produce practical VCSEL devices. But not until 1989 when DARPA began a series of programs that would support, among other technology goals, the government-wide High Performance Computing and Communications (HPCC) Initiative, did the financial and institutional resources become adequate to move technical promise toward technological reality. VCSELs could provide short-distance, high-speed digital interconnections that would be important to meet goals of the HPCC initiative. One thrust of this effort led to the formation of the Optoelectronic Technology consortium, which led to an industry-stimulating demonstrating of multi-gigabit optoelectronic interconnect components that were based on VCSELs. At this point, still with some DARPA support, industry began to take the development baton. By 2000, VCSELs began to emerge from their developmental status into applications in fiber-fiber interconnections, optical data storage, and sensing applications. They later subsequent find roles in technologies, such as free-space chip-to-chip communications and atomic clocks, which were supporting or leading players in later DARPA programs.
01/01/1989
The microelectronics revolution led to a ubiquity of fingernail-sized chips bearing integrated circuits made of large numbers of tiny transistors, interconnects, and other miniaturized components and devices. DARPA challenged the research community to achieve the tight integration of chips to the scale of the entire semiconductor wafer from which, normally, hundreds of chips would be diced and then packaged into separate components of electronic systems. Among the motivations were the expectations of higher computation or storage capability in a smaller volumes, higher-reliability systems; and reduced power consumption of the wafer-based systems. The research included work in materials, defect management, manufacturing techniques, among other areas. The approach opened up novel engineering opportunities particularly for fabricating multi-element, phased-array, antenna modules on gallium-arsenide wafer for both transmitting and receiving signals.
01/01/2013
Two set of DARPA performers—one team with researchers from the University of Southern California and Columbia University and another with researchers from MIT and Carnegie Mellon University—achieved world-record power output levels using silicon-based technologies for millimeter-wave power amplifiers. RF power amplifiers are used in communications and sensor systems to boost power levels for more reliable transmission of signals over greater distances.
01/01/1959
ARPA’s TIROS program placed the first dedicated weather satellite, TIROS 1, in orbit on April 1, 1960.