Defense Advanced Research Projects AgencyTagged Content List

DARPA History

History of DARPA and its accomplishments

Showing 157 results for History RSS
01/01/1969

Building on the momentum of jet engine research prior to ARPA’s creation, the Agency joined with the U.S. Army in 1965 on the Individual Mobility System (IMS) project (1965-1969) with the goal of extending the range and endurance of the Bell Rocket Belt developed for the Army in the 1950s. With DARPA funding, Bell replaced the vertical lift rocket system with a compact, highly efficient turbofan engine that Williams Research Corporation was developing.

The DARPA project helped bring the WR-19 turbofan engine into full development. It also brought it to the attention of the U.S. Air Force, for which the engine demonstrated excellent horizontal flight characteristics. The engine was adapted for use in the new Air Force cruise missile program. The U.S. Navy also became interested in the Williams Research engines as it adapted cruise missiles for maritime applications.

By the 1990s, improved versions of the Williams engine would power all the air, surface, and subsurface launched cruise missiles in the Navy and Air Force inventories. Later incarnation of these propulsion technology developments would power the AGM-86B air-launched cruise missiles and Navy Tomahawk cruise missiles in Desert Storm in 1991 and in subsequent conflicts.

01/01/1969

In 1969, the Applied Research Laboratory at Penn State began work, under U.S. Navy sponsorship, on a lithium-based thermal energy system for torpedo application. The system, known as the Stored Chemical Energy Propulsion System (SCEPS), was applicable to the high-power, short-duration mission of a torpedo. In a subsequent effort to further torpedo capabilities, DARPA subsequently selected the SCEPS heat source for use with an engine design that could be suitable for deployment in a long-endurance undersea vehicle.

One of the engineering obstacles that the DARPA adaptation of the heat source overcame was the development of long-life injectors of SF6 (one of the SCEPS chemical ingredients) that could survive in the system’s molten lithium bath. The Navy SCEPS program, which had also been experiencing some difficulty with injectors, adapted the DARPA technology. SCEPS became the power plant for the MK 50 Torpedo, which the Navy first authorized for use in late 1992.

01/01/1960

ARPA launched the first satellite in what would become the world's first global satellite navigation system. Known as Transit, the system provided accurate, all-weather navigation to both military and commercial vessels, including most importantly the U.S. Navy’s ballistic missile submarine force.

Transit, whose concept and technology were developed by Johns Hopkins University Applied Physics Laboratory, established the basis for wide acceptance of satellite navigation systems. The system's surveying capabilities—generally accurate to tens of meters—contributed to improving the accuracy of maps of the Earth's land areas by nearly two orders of magnitude.

ARPA funded the Transit program in 1958, launched its first satellite in 1960, and transitioned the technology to the Navy in the mid-1960s. By 1968, a fully operational constellation of 36 satellites was in place. Transit operated for 28 years until 1996, when the Defense Department replaced it with the current Global Positioning System (GPS).

01/01/1991
DARPA proved that practical, uncooled infrared detector technology was possible under the Low Cost, Uncooled Sensor Program (LOCUSP) of the late 1980’s. Previous generations of IR sensors used cryogenics to cool the detector materials and reduce system noise. Although these steps proved to be effective – these earlier systems were credited with being a major factor in the U.S. ground victory in Desert Strom, for example – the sensors were costly to develop, prohibiting widespread distribution to combat troops. Under the LOCUSP program, cost-effective, uncooled IR detector technology was developed, fabricated, and demonstrated for use across various military applications. In 1991, the Uncooled Focal Plane Arrays (UCFPA) project was started under the Balanced Technology Initiative to create practical applications of DARPA’s research into uncooled sensor arrays. Under this effort, uncooled focal plane arrays were advanced for applications such as surveillance systems for perimeter defense and weapon sights.
01/01/1988
Full-sized, staffed ships and other sea platform cannot perform safely in all Navy missions in near-shore, or littoral waters. These missions include mine location and avoidance as well as remote surveillance. In 1988, a joint DARPA/Navy Unmanned Undersea Vehicle (UUV) Program was initiated, with the goal of demonstrating that UUVs could meet specific Navy mission requirements. The program started with a memorandum of agreement between DARPA and the Navy that specified the design and fabrication of test-bed autonomous vehicles, the independent development of mission packages, and their subsequent integration. The Navy initially pursued a submarine-launched UUV that would either guide the submarine through an area that might be mined or search an area for mines. When the Cold War ended, however, the Navy revised the program with the objective of developing a tethered shallow-water mine reconnaissance vehicle for littoral warfare. The work in the UUV led to many follow-on projects, along with a range of technology developments. Even as the Agency enters its seventh decade, UUV R&D remains part of its portfolio.
| History |