Defense Advanced Research Projects AgencyTagged Content List

Restore and Maintain Warfighter Abilities

Relating to the restoration and optimization of human health

Showing 105 results for Health RSS
Stanford University researchers funded by DARPA’s Neuro Function, Activity, Structure, and Technology (Neuro-FAST) program have developed new optical imaging and analysis techniques that allowed them to decode the neural activity of awake mice engaged in an adaptive, decision-making task. The findings of the Stanford team, made in collaboration with researchers at the California Institute of Technology and detailed this week in the journal Neuron, give researchers new insight into how the mammalian brain coordinates neural activity to complete voluntary behaviors
At a ceremony in New York today, two veterans living with arm amputations became the first recipients of a new generation of prosthetic limb that promises them unprecedented, near-natural arm and hand motion. The modular, battery-powered arms, designed and developed by the Defense Advanced Research Projects Agency (DARPA), represent the most significant advance in upper extremity prosthetics in more than a century.
DARPA has awarded contracts to five research organizations and one company that will support the Neural Engineering System Design (NESD) program: Brown University; Columbia University; Fondation Voir et Entendre (The Seeing and Hearing Foundation); John B. Pierce Laboratory; Paradromics, Inc.; and the University of California, Berkeley. These organizations have formed teams to develop the fundamental research and component technologies required to pursue the NESD vision of a high-resolution neural interface and integrate them to create and demonstrate working systems able to support potential future therapies for sensory restoration. Four of the teams will focus on vision and two will focus on aspects of hearing and speech.
The increasing threat of infectious diseases is intensifying the need for breakthrough technologies and capabilities to protect first responders and equip them with therapeutics that can halt the impact of infectious agents. Current approaches for recent public health emergencies due to infectious diseases have not produced effective preventive or therapeutic solutions in a relevant timescale. Examples from recent outbreaks such as H3N2 (flu), Ebola, and Zika viruses highlight the significant lag in deployment and efficacy of life-saving solutions.
When a Service member suffers a traumatic injury or acute infection, the time from event to first medical treatment is usually the single most significant factor in determining the outcome between saving a life or not. First responders must act as quickly as possible, first to ensure a patient’s sheer survival and then to prevent permanent disability. The Department of Defense refers to this critical, initial window of time as the “golden hour,” but in many cases the opportunity to successfully intervene may extend much less than sixty minutes, which is why the military invests so heavily in moving casualties as rapidly as possible from the battlefield to suitable medical facilities.